Metamath Proof Explorer


Theorem flfnei

Description: The property of being a limit point of a function in terms of neighborhoods. (Contributed by Jeff Hankins, 9-Nov-2009) (Revised by Stefan O'Rear, 6-Aug-2015)

Ref Expression
Assertion flfnei JTopOnXLFilYF:YXAJfLimfLFAXnneiJAsLFsn

Proof

Step Hyp Ref Expression
1 flfval JTopOnXLFilYF:YXJfLimfLF=JfLimXFilMapFL
2 1 eleq2d JTopOnXLFilYF:YXAJfLimfLFAJfLimXFilMapFL
3 simp1 JTopOnXLFilYF:YXJTopOnX
4 toponmax JTopOnXXJ
5 4 3ad2ant1 JTopOnXLFilYF:YXXJ
6 filfbas LFilYLfBasY
7 6 3ad2ant2 JTopOnXLFilYF:YXLfBasY
8 simp3 JTopOnXLFilYF:YXF:YX
9 fmfil XJLfBasYF:YXXFilMapFLFilX
10 5 7 8 9 syl3anc JTopOnXLFilYF:YXXFilMapFLFilX
11 elflim JTopOnXXFilMapFLFilXAJfLimXFilMapFLAXneiJAXFilMapFL
12 3 10 11 syl2anc JTopOnXLFilYF:YXAJfLimXFilMapFLAXneiJAXFilMapFL
13 dfss3 neiJAXFilMapFLnneiJAnXFilMapFL
14 topontop JTopOnXJTop
15 14 3ad2ant1 JTopOnXLFilYF:YXJTop
16 eqid J=J
17 16 neii1 JTopnneiJAnJ
18 15 17 sylan JTopOnXLFilYF:YXnneiJAnJ
19 toponuni JTopOnXX=J
20 19 3ad2ant1 JTopOnXLFilYF:YXX=J
21 20 adantr JTopOnXLFilYF:YXnneiJAX=J
22 18 21 sseqtrrd JTopOnXLFilYF:YXnneiJAnX
23 elfm XJLfBasYF:YXnXFilMapFLnXsLFsn
24 5 7 8 23 syl3anc JTopOnXLFilYF:YXnXFilMapFLnXsLFsn
25 24 baibd JTopOnXLFilYF:YXnXnXFilMapFLsLFsn
26 22 25 syldan JTopOnXLFilYF:YXnneiJAnXFilMapFLsLFsn
27 26 ralbidva JTopOnXLFilYF:YXnneiJAnXFilMapFLnneiJAsLFsn
28 13 27 bitrid JTopOnXLFilYF:YXneiJAXFilMapFLnneiJAsLFsn
29 28 anbi2d JTopOnXLFilYF:YXAXneiJAXFilMapFLAXnneiJAsLFsn
30 2 12 29 3bitrd JTopOnXLFilYF:YXAJfLimfLFAXnneiJAsLFsn