Metamath Proof Explorer


Theorem fltne

Description: If a counterexample to FLT exists, its addends are not equal. (Contributed by Steven Nguyen, 1-Jun-2023)

Ref Expression
Hypotheses fltne.a φ A
fltne.b φ B
fltne.c φ C
fltne.n φ N 3
fltne.1 φ A N + B N = C N
Assertion fltne φ A B

Proof

Step Hyp Ref Expression
1 fltne.a φ A
2 fltne.b φ B
3 fltne.c φ C
4 fltne.n φ N 3
5 fltne.1 φ A N + B N = C N
6 2prm 2
7 6 a1i φ 2
8 uzuzle23 N 3 N 2
9 4 8 syl φ N 2
10 rtprmirr 2 N 2 2 1 N
11 7 9 10 syl2anc φ 2 1 N
12 11 eldifbd φ ¬ 2 1 N
13 3 nnzd φ C
14 znq C A C A
15 13 1 14 syl2anc φ C A
16 eleq1a C A 2 1 N = C A 2 1 N
17 15 16 syl φ 2 1 N = C A 2 1 N
18 17 necon3bd φ ¬ 2 1 N 2 1 N C A
19 12 18 mpd φ 2 1 N C A
20 2rp 2 +
21 20 a1i φ 2 +
22 eluzge3nn N 3 N
23 4 22 syl φ N
24 23 nnrecred φ 1 N
25 21 24 rpcxpcld φ 2 1 N +
26 25 adantr φ A = B 2 1 N +
27 3 nnrpd φ C +
28 1 nnrpd φ A +
29 27 28 rpdivcld φ C A +
30 29 adantr φ A = B C A +
31 simpl φ A = B φ
32 eluzelz N 3 N
33 31 4 32 3syl φ A = B N
34 23 nnne0d φ N 0
35 34 adantr φ A = B N 0
36 1 nncnd φ A
37 23 nnnn0d φ N 0
38 36 37 expcld φ A N
39 38 adantr φ A = B A N
40 2cnd φ A = B 2
41 1 nnne0d φ A 0
42 4 32 syl φ N
43 36 41 42 expne0d φ A N 0
44 43 adantr φ A = B A N 0
45 39 times2d φ A = B A N 2 = A N + A N
46 simpr φ A = B A = B
47 46 oveq1d φ A = B A N = B N
48 47 oveq2d φ A = B A N + A N = A N + B N
49 5 adantr φ A = B A N + B N = C N
50 45 48 49 3eqtrd φ A = B A N 2 = C N
51 39 40 44 50 mvllmuld φ A = B 2 = C N A N
52 23 adantr φ A = B N
53 cxproot 2 N 2 1 N N = 2
54 40 52 53 syl2anc φ A = B 2 1 N N = 2
55 3 nncnd φ C
56 55 36 41 37 expdivd φ C A N = C N A N
57 56 adantr φ A = B C A N = C N A N
58 51 54 57 3eqtr4d φ A = B 2 1 N N = C A N
59 26 30 33 35 58 exp11d φ A = B 2 1 N = C A
60 19 59 mteqand φ A B