Description: If a counterexample to FLT exists, its addends are not equal. (Contributed by SN, 1-Jun-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | fltne.a | |
|
fltne.b | |
||
fltne.c | |
||
fltne.n | |
||
fltne.1 | |
||
Assertion | fltne | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fltne.a | |
|
2 | fltne.b | |
|
3 | fltne.c | |
|
4 | fltne.n | |
|
5 | fltne.1 | |
|
6 | 2prm | |
|
7 | rtprmirr | |
|
8 | 6 4 7 | sylancr | |
9 | 8 | eldifbd | |
10 | 3 | nnzd | |
11 | znq | |
|
12 | 10 1 11 | syl2anc | |
13 | eleq1a | |
|
14 | 12 13 | syl | |
15 | 14 | necon3bd | |
16 | 9 15 | mpd | |
17 | 2rp | |
|
18 | 17 | a1i | |
19 | eluz2nn | |
|
20 | 4 19 | syl | |
21 | 20 | nnrecred | |
22 | 18 21 | rpcxpcld | |
23 | 22 | adantr | |
24 | 3 | nnrpd | |
25 | 1 | nnrpd | |
26 | 24 25 | rpdivcld | |
27 | 26 | adantr | |
28 | 20 | adantr | |
29 | 20 | nnnn0d | |
30 | 1 29 | nnexpcld | |
31 | 30 | adantr | |
32 | 31 | nncnd | |
33 | 2cnd | |
|
34 | 31 | nnne0d | |
35 | 30 | nncnd | |
36 | 35 | times2d | |
37 | 36 | adantr | |
38 | simpr | |
|
39 | 38 | oveq1d | |
40 | 39 | oveq2d | |
41 | 5 | adantr | |
42 | 37 40 41 | 3eqtrd | |
43 | 32 33 34 42 | mvllmuld | |
44 | 2cn | |
|
45 | cxproot | |
|
46 | 44 20 45 | sylancr | |
47 | 46 | adantr | |
48 | 3 | nncnd | |
49 | 1 | nncnd | |
50 | 1 | nnne0d | |
51 | 48 49 50 29 | expdivd | |
52 | 51 | adantr | |
53 | 43 47 52 | 3eqtr4d | |
54 | 23 27 28 53 | exp11nnd | |
55 | 16 54 | mteqand | |