Metamath Proof Explorer


Theorem fltne

Description: If a counterexample to FLT exists, its addends are not equal. (Contributed by SN, 1-Jun-2023)

Ref Expression
Hypotheses fltne.a φA
fltne.b φB
fltne.c φC
fltne.n φN2
fltne.1 φAN+BN=CN
Assertion fltne φAB

Proof

Step Hyp Ref Expression
1 fltne.a φA
2 fltne.b φB
3 fltne.c φC
4 fltne.n φN2
5 fltne.1 φAN+BN=CN
6 2prm 2
7 rtprmirr 2N221N
8 6 4 7 sylancr φ21N
9 8 eldifbd φ¬21N
10 3 nnzd φC
11 znq CACA
12 10 1 11 syl2anc φCA
13 eleq1a CA21N=CA21N
14 12 13 syl φ21N=CA21N
15 14 necon3bd φ¬21N21NCA
16 9 15 mpd φ21NCA
17 2rp 2+
18 17 a1i φ2+
19 eluz2nn N2N
20 4 19 syl φN
21 20 nnrecred φ1N
22 18 21 rpcxpcld φ21N+
23 22 adantr φA=B21N+
24 3 nnrpd φC+
25 1 nnrpd φA+
26 24 25 rpdivcld φCA+
27 26 adantr φA=BCA+
28 20 adantr φA=BN
29 20 nnnn0d φN0
30 1 29 nnexpcld φAN
31 30 adantr φA=BAN
32 31 nncnd φA=BAN
33 2cnd φA=B2
34 31 nnne0d φA=BAN0
35 30 nncnd φAN
36 35 times2d φAN2=AN+AN
37 36 adantr φA=BAN2=AN+AN
38 simpr φA=BA=B
39 38 oveq1d φA=BAN=BN
40 39 oveq2d φA=BAN+AN=AN+BN
41 5 adantr φA=BAN+BN=CN
42 37 40 41 3eqtrd φA=BAN2=CN
43 32 33 34 42 mvllmuld φA=B2=CNAN
44 2cn 2
45 cxproot 2N21NN=2
46 44 20 45 sylancr φ21NN=2
47 46 adantr φA=B21NN=2
48 3 nncnd φC
49 1 nncnd φA
50 1 nnne0d φA0
51 48 49 50 29 expdivd φCAN=CNAN
52 51 adantr φA=BCAN=CNAN
53 43 47 52 3eqtr4d φA=B21NN=CAN
54 23 27 28 53 exp11nnd φA=B21N=CA
55 16 54 mteqand φAB