| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fltne.a |
|
| 2 |
|
fltne.b |
|
| 3 |
|
fltne.c |
|
| 4 |
|
fltne.n |
|
| 5 |
|
fltne.1 |
|
| 6 |
|
2prm |
|
| 7 |
|
rtprmirr |
|
| 8 |
6 4 7
|
sylancr |
|
| 9 |
8
|
eldifbd |
|
| 10 |
3
|
nnzd |
|
| 11 |
|
znq |
|
| 12 |
10 1 11
|
syl2anc |
|
| 13 |
|
eleq1a |
|
| 14 |
12 13
|
syl |
|
| 15 |
14
|
necon3bd |
|
| 16 |
9 15
|
mpd |
|
| 17 |
|
2rp |
|
| 18 |
17
|
a1i |
|
| 19 |
|
eluz2nn |
|
| 20 |
4 19
|
syl |
|
| 21 |
20
|
nnrecred |
|
| 22 |
18 21
|
rpcxpcld |
|
| 23 |
22
|
adantr |
|
| 24 |
3
|
nnrpd |
|
| 25 |
1
|
nnrpd |
|
| 26 |
24 25
|
rpdivcld |
|
| 27 |
26
|
adantr |
|
| 28 |
20
|
adantr |
|
| 29 |
20
|
nnnn0d |
|
| 30 |
1 29
|
nnexpcld |
|
| 31 |
30
|
adantr |
|
| 32 |
31
|
nncnd |
|
| 33 |
|
2cnd |
|
| 34 |
31
|
nnne0d |
|
| 35 |
30
|
nncnd |
|
| 36 |
35
|
times2d |
|
| 37 |
36
|
adantr |
|
| 38 |
|
simpr |
|
| 39 |
38
|
oveq1d |
|
| 40 |
39
|
oveq2d |
|
| 41 |
5
|
adantr |
|
| 42 |
37 40 41
|
3eqtrd |
|
| 43 |
32 33 34 42
|
mvllmuld |
|
| 44 |
|
2cn |
|
| 45 |
|
cxproot |
|
| 46 |
44 20 45
|
sylancr |
|
| 47 |
46
|
adantr |
|
| 48 |
3
|
nncnd |
|
| 49 |
1
|
nncnd |
|
| 50 |
1
|
nnne0d |
|
| 51 |
48 49 50 29
|
expdivd |
|
| 52 |
51
|
adantr |
|
| 53 |
43 47 52
|
3eqtr4d |
|
| 54 |
23 27 28 53
|
exp11nnd |
|
| 55 |
16 54
|
mteqand |
|