Metamath Proof Explorer


Theorem fmtnofac1

Description: Divisor of Fermat number (Euler's Result), see ProofWiki "Divisor of Fermat Number/Euler's Result", 24-Jul-2021, https://proofwiki.org/wiki/Divisor_of_Fermat_Number/Euler's_Result ): "Let F_n be a Fermat number. Let m be divisor of F_n. Then m is in the form: k*2^(n+1)+1 where k is a positive integer." Here, however, k must be a nonnegative integer, because k must be 0 to represent 1 (which is a divisor of F_n ).

Historical Note: In 1747, Leonhard Paul Euler proved that a divisor of a Fermat number F_n is always in the form kx2^(n+1)+1. This was later refined to k*2^(n+2)+1 by François Édouard Anatole Lucas, see fmtnofac2 . (Contributed by AV, 30-Jul-2021)

Ref Expression
Assertion fmtnofac1 NMMFermatNoNk0M=k2N+1+1

Proof

Step Hyp Ref Expression
1 elnn1uz2 NN=1N2
2 5prm 5
3 dvdsprime 5MM5M=5M=1
4 2 3 mpan MM5M=5M=1
5 1nn0 10
6 5 a1i M=510
7 simpl M=5k=1M=5
8 oveq1 k=1k4=14
9 8 oveq1d k=1k4+1=14+1
10 9 adantl M=5k=1k4+1=14+1
11 7 10 eqeq12d M=5k=1M=k4+15=14+1
12 df-5 5=4+1
13 4cn 4
14 13 mullidi 14=4
15 14 eqcomi 4=14
16 15 oveq1i 4+1=14+1
17 12 16 eqtri 5=14+1
18 17 a1i M=55=14+1
19 6 11 18 rspcedvd M=5k0M=k4+1
20 0nn0 00
21 20 a1i M=100
22 simpl M=1k=0M=1
23 oveq1 k=0k4=04
24 23 oveq1d k=0k4+1=04+1
25 24 adantl M=1k=0k4+1=04+1
26 22 25 eqeq12d M=1k=0M=k4+11=04+1
27 13 mul02i 04=0
28 27 oveq1i 04+1=0+1
29 0p1e1 0+1=1
30 28 29 eqtri 04+1=1
31 30 eqcomi 1=04+1
32 31 a1i M=11=04+1
33 21 26 32 rspcedvd M=1k0M=k4+1
34 19 33 jaoi M=5M=1k0M=k4+1
35 4 34 syl6bi MM5k0M=k4+1
36 fveq2 N=1FermatNoN=FermatNo1
37 fmtno1 FermatNo1=5
38 36 37 eqtrdi N=1FermatNoN=5
39 38 breq2d N=1MFermatNoNM5
40 oveq1 N=1N+1=1+1
41 1p1e2 1+1=2
42 40 41 eqtrdi N=1N+1=2
43 42 oveq2d N=12N+1=22
44 sq2 22=4
45 43 44 eqtrdi N=12N+1=4
46 45 oveq2d N=1k2N+1=k4
47 46 oveq1d N=1k2N+1+1=k4+1
48 47 eqeq2d N=1M=k2N+1+1M=k4+1
49 48 rexbidv N=1k0M=k2N+1+1k0M=k4+1
50 39 49 imbi12d N=1MFermatNoNk0M=k2N+1+1M5k0M=k4+1
51 35 50 imbitrrid N=1MMFermatNoNk0M=k2N+1+1
52 fmtnofac2 N2MMFermatNoNn0M=n2N+2+1
53 id n0n0
54 2nn0 20
55 54 a1i n020
56 53 55 nn0mulcld n0n20
57 56 adantl N2MMFermatNoNn0n20
58 57 adantr N2MMFermatNoNn0M=n2N+2+1n20
59 simpr N2MMFermatNoNn0M=n2N+2+1M=n2N+2+1
60 oveq1 k=n2k2N+1=n22N+1
61 60 oveq1d k=n2k2N+1+1=n22N+1+1
62 59 61 eqeqan12d N2MMFermatNoNn0M=n2N+2+1k=n2M=k2N+1+1n2N+2+1=n22N+1+1
63 eluzge2nn0 N2N0
64 63 nn0cnd N2N
65 add1p1 NN+1+1=N+2
66 64 65 syl N2N+1+1=N+2
67 66 eqcomd N2N+2=N+1+1
68 67 oveq2d N22N+2=2N+1+1
69 2cnd N22
70 peano2nn0 N0N+10
71 63 70 syl N2N+10
72 69 71 expp1d N22N+1+1=2N+12
73 54 a1i N220
74 73 71 nn0expcld N22N+10
75 74 nn0cnd N22N+1
76 75 69 mulcomd N22N+12=22N+1
77 68 72 76 3eqtrd N22N+2=22N+1
78 77 adantr N2n02N+2=22N+1
79 78 oveq2d N2n0n2N+2=n22N+1
80 nn0cn n0n
81 80 adantl N2n0n
82 2cnd N2n02
83 75 adantr N2n02N+1
84 81 82 83 mulassd N2n0n22N+1=n22N+1
85 79 84 eqtr4d N2n0n2N+2=n22N+1
86 85 3ad2antl1 N2MMFermatNoNn0n2N+2=n22N+1
87 86 adantr N2MMFermatNoNn0M=n2N+2+1n2N+2=n22N+1
88 87 oveq1d N2MMFermatNoNn0M=n2N+2+1n2N+2+1=n22N+1+1
89 58 62 88 rspcedvd N2MMFermatNoNn0M=n2N+2+1k0M=k2N+1+1
90 89 rexlimdva2 N2MMFermatNoNn0M=n2N+2+1k0M=k2N+1+1
91 52 90 mpd N2MMFermatNoNk0M=k2N+1+1
92 91 3exp N2MMFermatNoNk0M=k2N+1+1
93 51 92 jaoi N=1N2MMFermatNoNk0M=k2N+1+1
94 1 93 sylbi NMMFermatNoNk0M=k2N+1+1
95 94 3imp NMMFermatNoNk0M=k2N+1+1