Metamath Proof Explorer


Theorem fparlem4

Description: Lemma for fpar . (Contributed by NM, 22-Dec-2008) (Revised by Mario Carneiro, 28-Apr-2015)

Ref Expression
Assertion fparlem4 GFnB2ndV×V-1G2ndV×V=yBV×y×V×Gy

Proof

Step Hyp Ref Expression
1 coiun 2ndV×V-1yB2ndV×V-1y×Gy=yB2ndV×V-12ndV×V-1y×Gy
2 inss1 domGran2ndV×VdomG
3 fndm GFnBdomG=B
4 2 3 sseqtrid GFnBdomGran2ndV×VB
5 dfco2a domGran2ndV×VBG2ndV×V=yB2ndV×V-1y×Gy
6 4 5 syl GFnBG2ndV×V=yB2ndV×V-1y×Gy
7 6 coeq2d GFnB2ndV×V-1G2ndV×V=2ndV×V-1yB2ndV×V-1y×Gy
8 inss1 domGy×V×yran2ndV×VdomGy×V×y
9 dmxpss domGy×V×yGy
10 8 9 sstri domGy×V×yran2ndV×VGy
11 dfco2a domGy×V×yran2ndV×VGyGy×V×y2ndV×V=xGy2ndV×V-1x×Gy×V×yx
12 10 11 ax-mp Gy×V×y2ndV×V=xGy2ndV×V-1x×Gy×V×yx
13 fvex GyV
14 fparlem2 2ndV×V-1x=V×x
15 sneq x=Gyx=Gy
16 15 xpeq2d x=GyV×x=V×Gy
17 14 16 eqtrid x=Gy2ndV×V-1x=V×Gy
18 15 imaeq2d x=GyGy×V×yx=Gy×V×yGy
19 df-ima Gy×V×yGy=ranGy×V×yGy
20 ssid GyGy
21 xpssres GyGyGy×V×yGy=Gy×V×y
22 20 21 ax-mp Gy×V×yGy=Gy×V×y
23 22 rneqi ranGy×V×yGy=ranGy×V×y
24 13 snnz Gy
25 rnxp GyranGy×V×y=V×y
26 24 25 ax-mp ranGy×V×y=V×y
27 23 26 eqtri ranGy×V×yGy=V×y
28 19 27 eqtri Gy×V×yGy=V×y
29 18 28 eqtrdi x=GyGy×V×yx=V×y
30 17 29 xpeq12d x=Gy2ndV×V-1x×Gy×V×yx=V×Gy×V×y
31 13 30 iunxsn xGy2ndV×V-1x×Gy×V×yx=V×Gy×V×y
32 12 31 eqtri Gy×V×y2ndV×V=V×Gy×V×y
33 32 cnveqi Gy×V×y2ndV×V-1=V×Gy×V×y-1
34 cnvco Gy×V×y2ndV×V-1=2ndV×V-1Gy×V×y-1
35 cnvxp V×Gy×V×y-1=V×y×V×Gy
36 33 34 35 3eqtr3i 2ndV×V-1Gy×V×y-1=V×y×V×Gy
37 fparlem2 2ndV×V-1y=V×y
38 37 xpeq2i Gy×2ndV×V-1y=Gy×V×y
39 fnsnfv GFnByBGy=Gy
40 39 xpeq1d GFnByBGy×2ndV×V-1y=Gy×2ndV×V-1y
41 38 40 eqtr3id GFnByBGy×V×y=Gy×2ndV×V-1y
42 41 cnveqd GFnByBGy×V×y-1=Gy×2ndV×V-1y-1
43 cnvxp Gy×2ndV×V-1y-1=2ndV×V-1y×Gy
44 42 43 eqtrdi GFnByBGy×V×y-1=2ndV×V-1y×Gy
45 44 coeq2d GFnByB2ndV×V-1Gy×V×y-1=2ndV×V-12ndV×V-1y×Gy
46 36 45 eqtr3id GFnByBV×y×V×Gy=2ndV×V-12ndV×V-1y×Gy
47 46 iuneq2dv GFnByBV×y×V×Gy=yB2ndV×V-12ndV×V-1y×Gy
48 1 7 47 3eqtr4a GFnB2ndV×V-1G2ndV×V=yBV×y×V×Gy