Database
REAL AND COMPLEX NUMBERS
Elementary limits and convergence
Finite and infinite products
Finite products
fprodabs
Next ⟩
fprodeq0
Metamath Proof Explorer
Ascii
Unicode
Theorem
fprodabs
Description:
The absolute value of a finite product.
(Contributed by
Scott Fenton
, 25-Dec-2017)
Ref
Expression
Hypotheses
fprodabs.1
⊢
Z
=
ℤ
≥
M
fprodabs.2
⊢
φ
→
N
∈
Z
fprodabs.3
⊢
φ
∧
k
∈
Z
→
A
∈
ℂ
Assertion
fprodabs
⊢
φ
→
∏
k
=
M
N
A
=
∏
k
=
M
N
A
Proof
Step
Hyp
Ref
Expression
1
fprodabs.1
⊢
Z
=
ℤ
≥
M
2
fprodabs.2
⊢
φ
→
N
∈
Z
3
fprodabs.3
⊢
φ
∧
k
∈
Z
→
A
∈
ℂ
4
2
1
eleqtrdi
⊢
φ
→
N
∈
ℤ
≥
M
5
oveq2
⊢
a
=
M
→
M
…
a
=
M
…
M
6
5
prodeq1d
⊢
a
=
M
→
∏
k
=
M
a
A
=
∏
k
=
M
M
A
7
6
fveq2d
⊢
a
=
M
→
∏
k
=
M
a
A
=
∏
k
=
M
M
A
8
5
prodeq1d
⊢
a
=
M
→
∏
k
=
M
a
A
=
∏
k
=
M
M
A
9
7
8
eqeq12d
⊢
a
=
M
→
∏
k
=
M
a
A
=
∏
k
=
M
a
A
↔
∏
k
=
M
M
A
=
∏
k
=
M
M
A
10
9
imbi2d
⊢
a
=
M
→
φ
→
∏
k
=
M
a
A
=
∏
k
=
M
a
A
↔
φ
→
∏
k
=
M
M
A
=
∏
k
=
M
M
A
11
oveq2
⊢
a
=
n
→
M
…
a
=
M
…
n
12
11
prodeq1d
⊢
a
=
n
→
∏
k
=
M
a
A
=
∏
k
=
M
n
A
13
12
fveq2d
⊢
a
=
n
→
∏
k
=
M
a
A
=
∏
k
=
M
n
A
14
11
prodeq1d
⊢
a
=
n
→
∏
k
=
M
a
A
=
∏
k
=
M
n
A
15
13
14
eqeq12d
⊢
a
=
n
→
∏
k
=
M
a
A
=
∏
k
=
M
a
A
↔
∏
k
=
M
n
A
=
∏
k
=
M
n
A
16
15
imbi2d
⊢
a
=
n
→
φ
→
∏
k
=
M
a
A
=
∏
k
=
M
a
A
↔
φ
→
∏
k
=
M
n
A
=
∏
k
=
M
n
A
17
oveq2
⊢
a
=
n
+
1
→
M
…
a
=
M
…
n
+
1
18
17
prodeq1d
⊢
a
=
n
+
1
→
∏
k
=
M
a
A
=
∏
k
=
M
n
+
1
A
19
18
fveq2d
⊢
a
=
n
+
1
→
∏
k
=
M
a
A
=
∏
k
=
M
n
+
1
A
20
17
prodeq1d
⊢
a
=
n
+
1
→
∏
k
=
M
a
A
=
∏
k
=
M
n
+
1
A
21
19
20
eqeq12d
⊢
a
=
n
+
1
→
∏
k
=
M
a
A
=
∏
k
=
M
a
A
↔
∏
k
=
M
n
+
1
A
=
∏
k
=
M
n
+
1
A
22
21
imbi2d
⊢
a
=
n
+
1
→
φ
→
∏
k
=
M
a
A
=
∏
k
=
M
a
A
↔
φ
→
∏
k
=
M
n
+
1
A
=
∏
k
=
M
n
+
1
A
23
oveq2
⊢
a
=
N
→
M
…
a
=
M
…
N
24
23
prodeq1d
⊢
a
=
N
→
∏
k
=
M
a
A
=
∏
k
=
M
N
A
25
24
fveq2d
⊢
a
=
N
→
∏
k
=
M
a
A
=
∏
k
=
M
N
A
26
23
prodeq1d
⊢
a
=
N
→
∏
k
=
M
a
A
=
∏
k
=
M
N
A
27
25
26
eqeq12d
⊢
a
=
N
→
∏
k
=
M
a
A
=
∏
k
=
M
a
A
↔
∏
k
=
M
N
A
=
∏
k
=
M
N
A
28
27
imbi2d
⊢
a
=
N
→
φ
→
∏
k
=
M
a
A
=
∏
k
=
M
a
A
↔
φ
→
∏
k
=
M
N
A
=
∏
k
=
M
N
A
29
csbfv2g
⦋
⦌
⦋
⦌
⊢
M
∈
ℤ
→
⦋
M
/
k
⦌
A
=
⦋
M
/
k
⦌
A
30
29
adantl
⦋
⦌
⦋
⦌
⊢
φ
∧
M
∈
ℤ
→
⦋
M
/
k
⦌
A
=
⦋
M
/
k
⦌
A
31
fzsn
⊢
M
∈
ℤ
→
M
…
M
=
M
32
31
adantl
⊢
φ
∧
M
∈
ℤ
→
M
…
M
=
M
33
32
prodeq1d
⊢
φ
∧
M
∈
ℤ
→
∏
k
=
M
M
A
=
∏
k
∈
M
A
34
simpr
⊢
φ
∧
M
∈
ℤ
→
M
∈
ℤ
35
uzid
⊢
M
∈
ℤ
→
M
∈
ℤ
≥
M
36
35
1
eleqtrrdi
⊢
M
∈
ℤ
→
M
∈
Z
37
3
ralrimiva
⊢
φ
→
∀
k
∈
Z
A
∈
ℂ
38
nfcsb1v
⦋
⦌
⊢
Ⅎ
_
k
⦋
M
/
k
⦌
A
39
38
nfel1
⦋
⦌
⊢
Ⅎ
k
⦋
M
/
k
⦌
A
∈
ℂ
40
csbeq1a
⦋
⦌
⊢
k
=
M
→
A
=
⦋
M
/
k
⦌
A
41
40
eleq1d
⦋
⦌
⊢
k
=
M
→
A
∈
ℂ
↔
⦋
M
/
k
⦌
A
∈
ℂ
42
39
41
rspc
⦋
⦌
⊢
M
∈
Z
→
∀
k
∈
Z
A
∈
ℂ
→
⦋
M
/
k
⦌
A
∈
ℂ
43
37
42
mpan9
⦋
⦌
⊢
φ
∧
M
∈
Z
→
⦋
M
/
k
⦌
A
∈
ℂ
44
36
43
sylan2
⦋
⦌
⊢
φ
∧
M
∈
ℤ
→
⦋
M
/
k
⦌
A
∈
ℂ
45
44
abscld
⦋
⦌
⊢
φ
∧
M
∈
ℤ
→
⦋
M
/
k
⦌
A
∈
ℝ
46
45
recnd
⦋
⦌
⊢
φ
∧
M
∈
ℤ
→
⦋
M
/
k
⦌
A
∈
ℂ
47
30
46
eqeltrd
⦋
⦌
⊢
φ
∧
M
∈
ℤ
→
⦋
M
/
k
⦌
A
∈
ℂ
48
prodsns
⦋
⦌
⦋
⦌
⊢
M
∈
ℤ
∧
⦋
M
/
k
⦌
A
∈
ℂ
→
∏
k
∈
M
A
=
⦋
M
/
k
⦌
A
49
34
47
48
syl2anc
⦋
⦌
⊢
φ
∧
M
∈
ℤ
→
∏
k
∈
M
A
=
⦋
M
/
k
⦌
A
50
33
49
eqtrd
⦋
⦌
⊢
φ
∧
M
∈
ℤ
→
∏
k
=
M
M
A
=
⦋
M
/
k
⦌
A
51
31
prodeq1d
⊢
M
∈
ℤ
→
∏
k
=
M
M
A
=
∏
k
∈
M
A
52
51
adantl
⊢
φ
∧
M
∈
ℤ
→
∏
k
=
M
M
A
=
∏
k
∈
M
A
53
prodsns
⦋
⦌
⦋
⦌
⊢
M
∈
ℤ
∧
⦋
M
/
k
⦌
A
∈
ℂ
→
∏
k
∈
M
A
=
⦋
M
/
k
⦌
A
54
34
44
53
syl2anc
⦋
⦌
⊢
φ
∧
M
∈
ℤ
→
∏
k
∈
M
A
=
⦋
M
/
k
⦌
A
55
52
54
eqtrd
⦋
⦌
⊢
φ
∧
M
∈
ℤ
→
∏
k
=
M
M
A
=
⦋
M
/
k
⦌
A
56
55
fveq2d
⦋
⦌
⊢
φ
∧
M
∈
ℤ
→
∏
k
=
M
M
A
=
⦋
M
/
k
⦌
A
57
30
50
56
3eqtr4rd
⊢
φ
∧
M
∈
ℤ
→
∏
k
=
M
M
A
=
∏
k
=
M
M
A
58
57
expcom
⊢
M
∈
ℤ
→
φ
→
∏
k
=
M
M
A
=
∏
k
=
M
M
A
59
simp3
⊢
φ
∧
n
∈
ℤ
≥
M
∧
∏
k
=
M
n
A
=
∏
k
=
M
n
A
→
∏
k
=
M
n
A
=
∏
k
=
M
n
A
60
ovex
⊢
n
+
1
∈
V
61
csbfv2g
⦋
⦌
⦋
⦌
⊢
n
+
1
∈
V
→
⦋
n
+
1
/
k
⦌
A
=
⦋
n
+
1
/
k
⦌
A
62
60
61
ax-mp
⦋
⦌
⦋
⦌
⊢
⦋
n
+
1
/
k
⦌
A
=
⦋
n
+
1
/
k
⦌
A
63
62
eqcomi
⦋
⦌
⦋
⦌
⊢
⦋
n
+
1
/
k
⦌
A
=
⦋
n
+
1
/
k
⦌
A
64
63
a1i
⦋
⦌
⦋
⦌
⊢
φ
∧
n
∈
ℤ
≥
M
∧
∏
k
=
M
n
A
=
∏
k
=
M
n
A
→
⦋
n
+
1
/
k
⦌
A
=
⦋
n
+
1
/
k
⦌
A
65
59
64
oveq12d
⦋
⦌
⦋
⦌
⊢
φ
∧
n
∈
ℤ
≥
M
∧
∏
k
=
M
n
A
=
∏
k
=
M
n
A
→
∏
k
=
M
n
A
⦋
n
+
1
/
k
⦌
A
=
∏
k
=
M
n
A
⦋
n
+
1
/
k
⦌
A
66
simpr
⊢
φ
∧
n
∈
ℤ
≥
M
→
n
∈
ℤ
≥
M
67
elfzuz
⊢
k
∈
M
…
n
+
1
→
k
∈
ℤ
≥
M
68
67
1
eleqtrrdi
⊢
k
∈
M
…
n
+
1
→
k
∈
Z
69
68
3
sylan2
⊢
φ
∧
k
∈
M
…
n
+
1
→
A
∈
ℂ
70
69
adantlr
⊢
φ
∧
n
∈
ℤ
≥
M
∧
k
∈
M
…
n
+
1
→
A
∈
ℂ
71
66
70
fprodp1s
⦋
⦌
⊢
φ
∧
n
∈
ℤ
≥
M
→
∏
k
=
M
n
+
1
A
=
∏
k
=
M
n
A
⦋
n
+
1
/
k
⦌
A
72
71
fveq2d
⦋
⦌
⊢
φ
∧
n
∈
ℤ
≥
M
→
∏
k
=
M
n
+
1
A
=
∏
k
=
M
n
A
⦋
n
+
1
/
k
⦌
A
73
fzfid
⊢
φ
∧
n
∈
ℤ
≥
M
→
M
…
n
∈
Fin
74
elfzuz
⊢
k
∈
M
…
n
→
k
∈
ℤ
≥
M
75
74
1
eleqtrrdi
⊢
k
∈
M
…
n
→
k
∈
Z
76
75
3
sylan2
⊢
φ
∧
k
∈
M
…
n
→
A
∈
ℂ
77
76
adantlr
⊢
φ
∧
n
∈
ℤ
≥
M
∧
k
∈
M
…
n
→
A
∈
ℂ
78
73
77
fprodcl
⊢
φ
∧
n
∈
ℤ
≥
M
→
∏
k
=
M
n
A
∈
ℂ
79
peano2uz
⊢
n
∈
ℤ
≥
M
→
n
+
1
∈
ℤ
≥
M
80
79
1
eleqtrrdi
⊢
n
∈
ℤ
≥
M
→
n
+
1
∈
Z
81
nfcsb1v
⦋
⦌
⊢
Ⅎ
_
k
⦋
n
+
1
/
k
⦌
A
82
81
nfel1
⦋
⦌
⊢
Ⅎ
k
⦋
n
+
1
/
k
⦌
A
∈
ℂ
83
csbeq1a
⦋
⦌
⊢
k
=
n
+
1
→
A
=
⦋
n
+
1
/
k
⦌
A
84
83
eleq1d
⦋
⦌
⊢
k
=
n
+
1
→
A
∈
ℂ
↔
⦋
n
+
1
/
k
⦌
A
∈
ℂ
85
82
84
rspc
⦋
⦌
⊢
n
+
1
∈
Z
→
∀
k
∈
Z
A
∈
ℂ
→
⦋
n
+
1
/
k
⦌
A
∈
ℂ
86
37
85
mpan9
⦋
⦌
⊢
φ
∧
n
+
1
∈
Z
→
⦋
n
+
1
/
k
⦌
A
∈
ℂ
87
80
86
sylan2
⦋
⦌
⊢
φ
∧
n
∈
ℤ
≥
M
→
⦋
n
+
1
/
k
⦌
A
∈
ℂ
88
78
87
absmuld
⦋
⦌
⦋
⦌
⊢
φ
∧
n
∈
ℤ
≥
M
→
∏
k
=
M
n
A
⦋
n
+
1
/
k
⦌
A
=
∏
k
=
M
n
A
⦋
n
+
1
/
k
⦌
A
89
72
88
eqtrd
⦋
⦌
⊢
φ
∧
n
∈
ℤ
≥
M
→
∏
k
=
M
n
+
1
A
=
∏
k
=
M
n
A
⦋
n
+
1
/
k
⦌
A
90
89
3adant3
⦋
⦌
⊢
φ
∧
n
∈
ℤ
≥
M
∧
∏
k
=
M
n
A
=
∏
k
=
M
n
A
→
∏
k
=
M
n
+
1
A
=
∏
k
=
M
n
A
⦋
n
+
1
/
k
⦌
A
91
70
abscld
⊢
φ
∧
n
∈
ℤ
≥
M
∧
k
∈
M
…
n
+
1
→
A
∈
ℝ
92
91
recnd
⊢
φ
∧
n
∈
ℤ
≥
M
∧
k
∈
M
…
n
+
1
→
A
∈
ℂ
93
66
92
fprodp1s
⦋
⦌
⊢
φ
∧
n
∈
ℤ
≥
M
→
∏
k
=
M
n
+
1
A
=
∏
k
=
M
n
A
⦋
n
+
1
/
k
⦌
A
94
93
3adant3
⦋
⦌
⊢
φ
∧
n
∈
ℤ
≥
M
∧
∏
k
=
M
n
A
=
∏
k
=
M
n
A
→
∏
k
=
M
n
+
1
A
=
∏
k
=
M
n
A
⦋
n
+
1
/
k
⦌
A
95
65
90
94
3eqtr4d
⊢
φ
∧
n
∈
ℤ
≥
M
∧
∏
k
=
M
n
A
=
∏
k
=
M
n
A
→
∏
k
=
M
n
+
1
A
=
∏
k
=
M
n
+
1
A
96
95
3exp
⊢
φ
→
n
∈
ℤ
≥
M
→
∏
k
=
M
n
A
=
∏
k
=
M
n
A
→
∏
k
=
M
n
+
1
A
=
∏
k
=
M
n
+
1
A
97
96
com12
⊢
n
∈
ℤ
≥
M
→
φ
→
∏
k
=
M
n
A
=
∏
k
=
M
n
A
→
∏
k
=
M
n
+
1
A
=
∏
k
=
M
n
+
1
A
98
97
a2d
⊢
n
∈
ℤ
≥
M
→
φ
→
∏
k
=
M
n
A
=
∏
k
=
M
n
A
→
φ
→
∏
k
=
M
n
+
1
A
=
∏
k
=
M
n
+
1
A
99
10
16
22
28
58
98
uzind4
⊢
N
∈
ℤ
≥
M
→
φ
→
∏
k
=
M
N
A
=
∏
k
=
M
N
A
100
4
99
mpcom
⊢
φ
→
∏
k
=
M
N
A
=
∏
k
=
M
N
A