Metamath Proof Explorer


Theorem fprodabs

Description: The absolute value of a finite product. (Contributed by Scott Fenton, 25-Dec-2017)

Ref Expression
Hypotheses fprodabs.1 Z=M
fprodabs.2 φNZ
fprodabs.3 φkZA
Assertion fprodabs φk=MNA=k=MNA

Proof

Step Hyp Ref Expression
1 fprodabs.1 Z=M
2 fprodabs.2 φNZ
3 fprodabs.3 φkZA
4 2 1 eleqtrdi φNM
5 oveq2 a=MMa=MM
6 5 prodeq1d a=Mk=MaA=k=MMA
7 6 fveq2d a=Mk=MaA=k=MMA
8 5 prodeq1d a=Mk=MaA=k=MMA
9 7 8 eqeq12d a=Mk=MaA=k=MaAk=MMA=k=MMA
10 9 imbi2d a=Mφk=MaA=k=MaAφk=MMA=k=MMA
11 oveq2 a=nMa=Mn
12 11 prodeq1d a=nk=MaA=k=MnA
13 12 fveq2d a=nk=MaA=k=MnA
14 11 prodeq1d a=nk=MaA=k=MnA
15 13 14 eqeq12d a=nk=MaA=k=MaAk=MnA=k=MnA
16 15 imbi2d a=nφk=MaA=k=MaAφk=MnA=k=MnA
17 oveq2 a=n+1Ma=Mn+1
18 17 prodeq1d a=n+1k=MaA=k=Mn+1A
19 18 fveq2d a=n+1k=MaA=k=Mn+1A
20 17 prodeq1d a=n+1k=MaA=k=Mn+1A
21 19 20 eqeq12d a=n+1k=MaA=k=MaAk=Mn+1A=k=Mn+1A
22 21 imbi2d a=n+1φk=MaA=k=MaAφk=Mn+1A=k=Mn+1A
23 oveq2 a=NMa=MN
24 23 prodeq1d a=Nk=MaA=k=MNA
25 24 fveq2d a=Nk=MaA=k=MNA
26 23 prodeq1d a=Nk=MaA=k=MNA
27 25 26 eqeq12d a=Nk=MaA=k=MaAk=MNA=k=MNA
28 27 imbi2d a=Nφk=MaA=k=MaAφk=MNA=k=MNA
29 csbfv2g MM/kA=M/kA
30 29 adantl φMM/kA=M/kA
31 fzsn MMM=M
32 31 adantl φMMM=M
33 32 prodeq1d φMk=MMA=kMA
34 simpr φMM
35 uzid MMM
36 35 1 eleqtrrdi MMZ
37 3 ralrimiva φkZA
38 nfcsb1v _kM/kA
39 38 nfel1 kM/kA
40 csbeq1a k=MA=M/kA
41 40 eleq1d k=MAM/kA
42 39 41 rspc MZkZAM/kA
43 37 42 mpan9 φMZM/kA
44 36 43 sylan2 φMM/kA
45 44 abscld φMM/kA
46 45 recnd φMM/kA
47 30 46 eqeltrd φMM/kA
48 prodsns MM/kAkMA=M/kA
49 34 47 48 syl2anc φMkMA=M/kA
50 33 49 eqtrd φMk=MMA=M/kA
51 31 prodeq1d Mk=MMA=kMA
52 51 adantl φMk=MMA=kMA
53 prodsns MM/kAkMA=M/kA
54 34 44 53 syl2anc φMkMA=M/kA
55 52 54 eqtrd φMk=MMA=M/kA
56 55 fveq2d φMk=MMA=M/kA
57 30 50 56 3eqtr4rd φMk=MMA=k=MMA
58 57 expcom Mφk=MMA=k=MMA
59 simp3 φnMk=MnA=k=MnAk=MnA=k=MnA
60 ovex n+1V
61 csbfv2g n+1Vn+1/kA=n+1/kA
62 60 61 ax-mp n+1/kA=n+1/kA
63 62 eqcomi n+1/kA=n+1/kA
64 63 a1i φnMk=MnA=k=MnAn+1/kA=n+1/kA
65 59 64 oveq12d φnMk=MnA=k=MnAk=MnAn+1/kA=k=MnAn+1/kA
66 simpr φnMnM
67 elfzuz kMn+1kM
68 67 1 eleqtrrdi kMn+1kZ
69 68 3 sylan2 φkMn+1A
70 69 adantlr φnMkMn+1A
71 66 70 fprodp1s φnMk=Mn+1A=k=MnAn+1/kA
72 71 fveq2d φnMk=Mn+1A=k=MnAn+1/kA
73 fzfid φnMMnFin
74 elfzuz kMnkM
75 74 1 eleqtrrdi kMnkZ
76 75 3 sylan2 φkMnA
77 76 adantlr φnMkMnA
78 73 77 fprodcl φnMk=MnA
79 peano2uz nMn+1M
80 79 1 eleqtrrdi nMn+1Z
81 nfcsb1v _kn+1/kA
82 81 nfel1 kn+1/kA
83 csbeq1a k=n+1A=n+1/kA
84 83 eleq1d k=n+1An+1/kA
85 82 84 rspc n+1ZkZAn+1/kA
86 37 85 mpan9 φn+1Zn+1/kA
87 80 86 sylan2 φnMn+1/kA
88 78 87 absmuld φnMk=MnAn+1/kA=k=MnAn+1/kA
89 72 88 eqtrd φnMk=Mn+1A=k=MnAn+1/kA
90 89 3adant3 φnMk=MnA=k=MnAk=Mn+1A=k=MnAn+1/kA
91 70 abscld φnMkMn+1A
92 91 recnd φnMkMn+1A
93 66 92 fprodp1s φnMk=Mn+1A=k=MnAn+1/kA
94 93 3adant3 φnMk=MnA=k=MnAk=Mn+1A=k=MnAn+1/kA
95 65 90 94 3eqtr4d φnMk=MnA=k=MnAk=Mn+1A=k=Mn+1A
96 95 3exp φnMk=MnA=k=MnAk=Mn+1A=k=Mn+1A
97 96 com12 nMφk=MnA=k=MnAk=Mn+1A=k=Mn+1A
98 97 a2d nMφk=MnA=k=MnAφk=Mn+1A=k=Mn+1A
99 10 16 22 28 58 98 uzind4 NMφk=MNA=k=MNA
100 4 99 mpcom φk=MNA=k=MNA