Metamath Proof Explorer


Theorem fprodcvg

Description: The sequence of partial products of a finite product converges to the whole product. (Contributed by Scott Fenton, 4-Dec-2017)

Ref Expression
Hypotheses prodmo.1 F = k if k A B 1
prodmo.2 φ k A B
prodrb.3 φ N M
fprodcvg.4 φ A M N
Assertion fprodcvg φ seq M × F seq M × F N

Proof

Step Hyp Ref Expression
1 prodmo.1 F = k if k A B 1
2 prodmo.2 φ k A B
3 prodrb.3 φ N M
4 fprodcvg.4 φ A M N
5 eqid N = N
6 eluzelz N M N
7 3 6 syl φ N
8 seqex seq M × F V
9 8 a1i φ seq M × F V
10 eqid M = M
11 eluzel2 N M M
12 3 11 syl φ M
13 eluzelz k M k
14 13 adantl φ k M k
15 iftrue k A if k A B 1 = B
16 15 adantl φ k M k A if k A B 1 = B
17 2 adantlr φ k M k A B
18 16 17 eqeltrd φ k M k A if k A B 1
19 18 ex φ k M k A if k A B 1
20 iffalse ¬ k A if k A B 1 = 1
21 ax-1cn 1
22 20 21 eqeltrdi ¬ k A if k A B 1
23 19 22 pm2.61d1 φ k M if k A B 1
24 1 fvmpt2 k if k A B 1 F k = if k A B 1
25 14 23 24 syl2anc φ k M F k = if k A B 1
26 25 23 eqeltrd φ k M F k
27 10 12 26 prodf φ seq M × F : M
28 27 3 ffvelrnd φ seq M × F N
29 mulid1 m m 1 = m
30 29 adantl φ n N m m 1 = m
31 3 adantr φ n N N M
32 simpr φ n N n N
33 12 adantr φ n N M
34 26 adantlr φ n N k M F k
35 10 33 34 prodf φ n N seq M × F : M
36 35 31 ffvelrnd φ n N seq M × F N
37 elfzuz m N + 1 n m N + 1
38 eluzelz m N + 1 m
39 38 adantl φ m N + 1 m
40 4 sseld φ m A m M N
41 fznuz m M N ¬ m N + 1
42 40 41 syl6 φ m A ¬ m N + 1
43 42 con2d φ m N + 1 ¬ m A
44 43 imp φ m N + 1 ¬ m A
45 39 44 eldifd φ m N + 1 m A
46 fveqeq2 k = m F k = 1 F m = 1
47 eldifi k A k
48 eldifn k A ¬ k A
49 48 20 syl k A if k A B 1 = 1
50 49 21 eqeltrdi k A if k A B 1
51 47 50 24 syl2anc k A F k = if k A B 1
52 51 49 eqtrd k A F k = 1
53 46 52 vtoclga m A F m = 1
54 45 53 syl φ m N + 1 F m = 1
55 37 54 sylan2 φ m N + 1 n F m = 1
56 55 adantlr φ n N m N + 1 n F m = 1
57 30 31 32 36 56 seqid2 φ n N seq M × F N = seq M × F n
58 57 eqcomd φ n N seq M × F n = seq M × F N
59 5 7 9 28 58 climconst φ seq M × F seq M × F N