Metamath Proof Explorer


Theorem fpwwe2lem10

Description: Lemma for fpwwe2 . (Contributed by Mario Carneiro, 15-May-2015) (Revised by AV, 20-Jul-2024)

Ref Expression
Hypotheses fpwwe2.1 W=xr|xArx×xrWexyx[˙r-1y/u]˙uFru×u=y
fpwwe2.2 φAV
fpwwe2.3 φxArx×xrWexxFrA
fpwwe2.4 X=domW
Assertion fpwwe2lem10 φW:domW𝒫X×X

Proof

Step Hyp Ref Expression
1 fpwwe2.1 W=xr|xArx×xrWexyx[˙r-1y/u]˙uFru×u=y
2 fpwwe2.2 φAV
3 fpwwe2.3 φxArx×xrWexxFrA
4 fpwwe2.4 X=domW
5 1 relopabiv RelW
6 5 a1i φRelW
7 simprr φwWswWtwws=tw×ws=tw×w
8 1 2 fpwwe2lem2 φwWtwAtw×wtWewyw[˙t-1y/u]˙uFtu×u=y
9 8 simprbda φwWtwAtw×w
10 9 simprd φwWttw×w
11 10 adantrl φwWswWttw×w
12 11 adantr φwWswWtwws=tw×wtw×w
13 df-ss tw×wtw×w=t
14 12 13 sylib φwWswWtwws=tw×wtw×w=t
15 7 14 eqtrd φwWswWtwws=tw×ws=t
16 simprr φwWswWtwwt=sw×wt=sw×w
17 1 2 fpwwe2lem2 φwWswAsw×wsWewyw[˙s-1y/u]˙uFsu×u=y
18 17 simprbda φwWswAsw×w
19 18 simprd φwWssw×w
20 19 adantrr φwWswWtsw×w
21 20 adantr φwWswWtwwt=sw×wsw×w
22 df-ss sw×wsw×w=s
23 21 22 sylib φwWswWtwwt=sw×wsw×w=s
24 16 23 eqtr2d φwWswWtwwt=sw×ws=t
25 2 adantr φwWswWtAV
26 3 adantlr φwWswWtxArx×xrWexxFrA
27 simprl φwWswWtwWs
28 simprr φwWswWtwWt
29 1 25 26 27 28 fpwwe2lem9 φwWswWtwws=tw×wwwt=sw×w
30 15 24 29 mpjaodan φwWswWts=t
31 30 ex φwWswWts=t
32 31 alrimiv φtwWswWts=t
33 32 alrimivv φwstwWswWts=t
34 dffun2 FunWRelWwstwWswWts=t
35 6 33 34 sylanbrc φFunW
36 35 funfnd φWFndomW
37 vex sV
38 37 elrn sranWwwWs
39 5 releldmi wWswdomW
40 39 adantl φwWswdomW
41 elssuni wdomWwdomW
42 40 41 syl φwWswdomW
43 42 4 sseqtrrdi φwWswX
44 xpss12 wXwXw×wX×X
45 43 43 44 syl2anc φwWsw×wX×X
46 19 45 sstrd φwWssX×X
47 46 ex φwWssX×X
48 velpw s𝒫X×XsX×X
49 47 48 imbitrrdi φwWss𝒫X×X
50 49 exlimdv φwwWss𝒫X×X
51 38 50 biimtrid φsranWs𝒫X×X
52 51 ssrdv φranW𝒫X×X
53 df-f W:domW𝒫X×XWFndomWranW𝒫X×X
54 36 52 53 sylanbrc φW:domW𝒫X×X