Description: Lemma for fpwwe2 . (Contributed by Mario Carneiro, 15-May-2015) (Revised by AV, 20-Jul-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | fpwwe2.1 | |
|
fpwwe2.2 | |
||
fpwwe2.3 | |
||
fpwwe2.4 | |
||
Assertion | fpwwe2lem10 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fpwwe2.1 | |
|
2 | fpwwe2.2 | |
|
3 | fpwwe2.3 | |
|
4 | fpwwe2.4 | |
|
5 | 1 | relopabiv | |
6 | 5 | a1i | |
7 | simprr | |
|
8 | 1 2 | fpwwe2lem2 | |
9 | 8 | simprbda | |
10 | 9 | simprd | |
11 | 10 | adantrl | |
12 | 11 | adantr | |
13 | df-ss | |
|
14 | 12 13 | sylib | |
15 | 7 14 | eqtrd | |
16 | simprr | |
|
17 | 1 2 | fpwwe2lem2 | |
18 | 17 | simprbda | |
19 | 18 | simprd | |
20 | 19 | adantrr | |
21 | 20 | adantr | |
22 | df-ss | |
|
23 | 21 22 | sylib | |
24 | 16 23 | eqtr2d | |
25 | 2 | adantr | |
26 | 3 | adantlr | |
27 | simprl | |
|
28 | simprr | |
|
29 | 1 25 26 27 28 | fpwwe2lem9 | |
30 | 15 24 29 | mpjaodan | |
31 | 30 | ex | |
32 | 31 | alrimiv | |
33 | 32 | alrimivv | |
34 | dffun2 | |
|
35 | 6 33 34 | sylanbrc | |
36 | 35 | funfnd | |
37 | vex | |
|
38 | 37 | elrn | |
39 | 5 | releldmi | |
40 | 39 | adantl | |
41 | elssuni | |
|
42 | 40 41 | syl | |
43 | 42 4 | sseqtrrdi | |
44 | xpss12 | |
|
45 | 43 43 44 | syl2anc | |
46 | 19 45 | sstrd | |
47 | 46 | ex | |
48 | velpw | |
|
49 | 47 48 | imbitrrdi | |
50 | 49 | exlimdv | |
51 | 38 50 | biimtrid | |
52 | 51 | ssrdv | |
53 | df-f | |
|
54 | 36 52 53 | sylanbrc | |