Metamath Proof Explorer


Theorem frgr2wwlkeqm

Description: If there is a (simple) path of length 2 from one vertex to another vertex and a (simple) path of length 2 from the other vertex back to the first vertex in a friendship graph, then the middle vertex is the same. This is only an observation, which is not required to proof the friendship theorem. (Contributed by Alexander van der Vekens, 20-Feb-2018) (Revised by AV, 13-May-2021) (Proof shortened by AV, 7-Jan-2022)

Ref Expression
Assertion frgr2wwlkeqm GFriendGraphABPXQY⟨“APB”⟩A2WWalksNOnGB⟨“BQA”⟩B2WWalksNOnGAQ=P

Proof

Step Hyp Ref Expression
1 simp3l GFriendGraphABPXQYPX
2 eqid VtxG=VtxG
3 2 wwlks2onv PX⟨“APB”⟩A2WWalksNOnGBAVtxGPVtxGBVtxG
4 1 3 sylan GFriendGraphABPXQY⟨“APB”⟩A2WWalksNOnGBAVtxGPVtxGBVtxG
5 simp3r GFriendGraphABPXQYQY
6 2 wwlks2onv QY⟨“BQA”⟩B2WWalksNOnGABVtxGQVtxGAVtxG
7 5 6 sylan GFriendGraphABPXQY⟨“BQA”⟩B2WWalksNOnGABVtxGQVtxGAVtxG
8 frgrusgr GFriendGraphGUSGraph
9 usgrumgr GUSGraphGUMGraph
10 8 9 syl GFriendGraphGUMGraph
11 10 3ad2ant1 GFriendGraphABPXQYGUMGraph
12 simpr3 QVtxGAVtxGPVtxGBVtxGBVtxG
13 simpl QVtxGAVtxGPVtxGBVtxGQVtxG
14 simpr1 QVtxGAVtxGPVtxGBVtxGAVtxG
15 12 13 14 3jca QVtxGAVtxGPVtxGBVtxGBVtxGQVtxGAVtxG
16 2 wwlks2onsym GUMGraphBVtxGQVtxGAVtxG⟨“BQA”⟩B2WWalksNOnGA⟨“AQB”⟩A2WWalksNOnGB
17 11 15 16 syl2anr QVtxGAVtxGPVtxGBVtxGGFriendGraphABPXQY⟨“BQA”⟩B2WWalksNOnGA⟨“AQB”⟩A2WWalksNOnGB
18 simpr1 QVtxGAVtxGPVtxGBVtxGGFriendGraphABPXQYGFriendGraph
19 3simpb AVtxGPVtxGBVtxGAVtxGBVtxG
20 19 ad2antlr QVtxGAVtxGPVtxGBVtxGGFriendGraphABPXQYAVtxGBVtxG
21 simpr2 QVtxGAVtxGPVtxGBVtxGGFriendGraphABPXQYAB
22 2 frgr2wwlkeu GFriendGraphAVtxGBVtxGAB∃!xVtxG⟨“AxB”⟩A2WWalksNOnGB
23 18 20 21 22 syl3anc QVtxGAVtxGPVtxGBVtxGGFriendGraphABPXQY∃!xVtxG⟨“AxB”⟩A2WWalksNOnGB
24 s3eq2 x=Q⟨“AxB”⟩=⟨“AQB”⟩
25 24 eleq1d x=Q⟨“AxB”⟩A2WWalksNOnGB⟨“AQB”⟩A2WWalksNOnGB
26 25 riota2 QVtxG∃!xVtxG⟨“AxB”⟩A2WWalksNOnGB⟨“AQB”⟩A2WWalksNOnGBιxVtxG|⟨“AxB”⟩A2WWalksNOnGB=Q
27 26 ad4ant14 QVtxGAVtxGPVtxGBVtxGGFriendGraphABPXQY∃!xVtxG⟨“AxB”⟩A2WWalksNOnGB⟨“AQB”⟩A2WWalksNOnGBιxVtxG|⟨“AxB”⟩A2WWalksNOnGB=Q
28 simplr2 QVtxGAVtxGPVtxGBVtxGGFriendGraphABPXQYPVtxG
29 s3eq2 x=P⟨“AxB”⟩=⟨“APB”⟩
30 29 eleq1d x=P⟨“AxB”⟩A2WWalksNOnGB⟨“APB”⟩A2WWalksNOnGB
31 30 riota2 PVtxG∃!xVtxG⟨“AxB”⟩A2WWalksNOnGB⟨“APB”⟩A2WWalksNOnGBιxVtxG|⟨“AxB”⟩A2WWalksNOnGB=P
32 28 31 sylan QVtxGAVtxGPVtxGBVtxGGFriendGraphABPXQY∃!xVtxG⟨“AxB”⟩A2WWalksNOnGB⟨“APB”⟩A2WWalksNOnGBιxVtxG|⟨“AxB”⟩A2WWalksNOnGB=P
33 eqtr2 ιxVtxG|⟨“AxB”⟩A2WWalksNOnGB=QιxVtxG|⟨“AxB”⟩A2WWalksNOnGB=PQ=P
34 33 expcom ιxVtxG|⟨“AxB”⟩A2WWalksNOnGB=PιxVtxG|⟨“AxB”⟩A2WWalksNOnGB=QQ=P
35 32 34 syl6bi QVtxGAVtxGPVtxGBVtxGGFriendGraphABPXQY∃!xVtxG⟨“AxB”⟩A2WWalksNOnGB⟨“APB”⟩A2WWalksNOnGBιxVtxG|⟨“AxB”⟩A2WWalksNOnGB=QQ=P
36 35 com23 QVtxGAVtxGPVtxGBVtxGGFriendGraphABPXQY∃!xVtxG⟨“AxB”⟩A2WWalksNOnGBιxVtxG|⟨“AxB”⟩A2WWalksNOnGB=Q⟨“APB”⟩A2WWalksNOnGBQ=P
37 27 36 sylbid QVtxGAVtxGPVtxGBVtxGGFriendGraphABPXQY∃!xVtxG⟨“AxB”⟩A2WWalksNOnGB⟨“AQB”⟩A2WWalksNOnGB⟨“APB”⟩A2WWalksNOnGBQ=P
38 23 37 mpdan QVtxGAVtxGPVtxGBVtxGGFriendGraphABPXQY⟨“AQB”⟩A2WWalksNOnGB⟨“APB”⟩A2WWalksNOnGBQ=P
39 17 38 sylbid QVtxGAVtxGPVtxGBVtxGGFriendGraphABPXQY⟨“BQA”⟩B2WWalksNOnGA⟨“APB”⟩A2WWalksNOnGBQ=P
40 39 expimpd QVtxGAVtxGPVtxGBVtxGGFriendGraphABPXQY⟨“BQA”⟩B2WWalksNOnGA⟨“APB”⟩A2WWalksNOnGBQ=P
41 40 ex QVtxGAVtxGPVtxGBVtxGGFriendGraphABPXQY⟨“BQA”⟩B2WWalksNOnGA⟨“APB”⟩A2WWalksNOnGBQ=P
42 41 com23 QVtxGGFriendGraphABPXQY⟨“BQA”⟩B2WWalksNOnGAAVtxGPVtxGBVtxG⟨“APB”⟩A2WWalksNOnGBQ=P
43 42 3ad2ant2 BVtxGQVtxGAVtxGGFriendGraphABPXQY⟨“BQA”⟩B2WWalksNOnGAAVtxGPVtxGBVtxG⟨“APB”⟩A2WWalksNOnGBQ=P
44 7 43 mpcom GFriendGraphABPXQY⟨“BQA”⟩B2WWalksNOnGAAVtxGPVtxGBVtxG⟨“APB”⟩A2WWalksNOnGBQ=P
45 44 ex GFriendGraphABPXQY⟨“BQA”⟩B2WWalksNOnGAAVtxGPVtxGBVtxG⟨“APB”⟩A2WWalksNOnGBQ=P
46 45 com24 GFriendGraphABPXQY⟨“APB”⟩A2WWalksNOnGBAVtxGPVtxGBVtxG⟨“BQA”⟩B2WWalksNOnGAQ=P
47 46 imp GFriendGraphABPXQY⟨“APB”⟩A2WWalksNOnGBAVtxGPVtxGBVtxG⟨“BQA”⟩B2WWalksNOnGAQ=P
48 4 47 mpd GFriendGraphABPXQY⟨“APB”⟩A2WWalksNOnGB⟨“BQA”⟩B2WWalksNOnGAQ=P
49 48 expimpd GFriendGraphABPXQY⟨“APB”⟩A2WWalksNOnGB⟨“BQA”⟩B2WWalksNOnGAQ=P