Description: If there is a (simple) path of length 2 from one vertex to another vertex and a (simple) path of length 2 from the other vertex back to the first vertex in a friendship graph, then the middle vertex is the same. This is only an observation, which is not required to proof the friendship theorem. (Contributed by Alexander van der Vekens, 20-Feb-2018) (Revised by AV, 13-May-2021) (Proof shortened by AV, 7-Jan-2022)
Ref | Expression | ||
---|---|---|---|
Assertion | frgr2wwlkeqm | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3l | |
|
2 | eqid | |
|
3 | 2 | wwlks2onv | |
4 | 1 3 | sylan | |
5 | simp3r | |
|
6 | 2 | wwlks2onv | |
7 | 5 6 | sylan | |
8 | frgrusgr | |
|
9 | usgrumgr | |
|
10 | 8 9 | syl | |
11 | 10 | 3ad2ant1 | |
12 | simpr3 | |
|
13 | simpl | |
|
14 | simpr1 | |
|
15 | 12 13 14 | 3jca | |
16 | 2 | wwlks2onsym | |
17 | 11 15 16 | syl2anr | |
18 | simpr1 | |
|
19 | 3simpb | |
|
20 | 19 | ad2antlr | |
21 | simpr2 | |
|
22 | 2 | frgr2wwlkeu | |
23 | 18 20 21 22 | syl3anc | |
24 | s3eq2 | |
|
25 | 24 | eleq1d | |
26 | 25 | riota2 | |
27 | 26 | ad4ant14 | |
28 | simplr2 | |
|
29 | s3eq2 | |
|
30 | 29 | eleq1d | |
31 | 30 | riota2 | |
32 | 28 31 | sylan | |
33 | eqtr2 | |
|
34 | 33 | expcom | |
35 | 32 34 | syl6bi | |
36 | 35 | com23 | |
37 | 27 36 | sylbid | |
38 | 23 37 | mpdan | |
39 | 17 38 | sylbid | |
40 | 39 | expimpd | |
41 | 40 | ex | |
42 | 41 | com23 | |
43 | 42 | 3ad2ant2 | |
44 | 7 43 | mpcom | |
45 | 44 | ex | |
46 | 45 | com24 | |
47 | 46 | imp | |
48 | 4 47 | mpd | |
49 | 48 | expimpd | |