Description: A subclass of a well-founded class A with the property that whenever it contains all predecessors of an element of A it also contains that element, is equal to A . Compare wfi and tfi , which are special cases of this theorem that do not require the axiom of infinity. (Contributed by Scott Fenton, 6-Feb-2011) (Revised by Mario Carneiro, 26-Jun-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | frind | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssdif0 | |
|
2 | 1 | necon3bbii | |
3 | difss | |
|
4 | frmin | |
|
5 | eldif | |
|
6 | 5 | anbi1i | |
7 | anass | |
|
8 | ancom | |
|
9 | indif2 | |
|
10 | df-pred | |
|
11 | incom | |
|
12 | 10 11 | eqtri | |
13 | df-pred | |
|
14 | incom | |
|
15 | 13 14 | eqtri | |
16 | 15 | difeq1i | |
17 | 9 12 16 | 3eqtr4i | |
18 | 17 | eqeq1i | |
19 | ssdif0 | |
|
20 | 18 19 | bitr4i | |
21 | 20 | anbi1i | |
22 | 8 21 | bitri | |
23 | 22 | anbi2i | |
24 | 6 7 23 | 3bitri | |
25 | 24 | rexbii2 | |
26 | rexanali | |
|
27 | 25 26 | bitri | |
28 | 4 27 | sylib | |
29 | 28 | ex | |
30 | 3 29 | mpani | |
31 | 2 30 | biimtrid | |
32 | 31 | con4d | |
33 | 32 | imp | |
34 | 33 | adantrl | |
35 | simprl | |
|
36 | 34 35 | eqssd | |