Metamath Proof Explorer


Theorem frind

Description: A subclass of a well-founded class A with the property that whenever it contains all predecessors of an element of A it also contains that element, is equal to A . Compare wfi and tfi , which are special cases of this theorem that do not require the axiom of infinity. (Contributed by Scott Fenton, 6-Feb-2011) (Revised by Mario Carneiro, 26-Jun-2015)

Ref Expression
Assertion frind RFrARSeABAyAPredRAyByBA=B

Proof

Step Hyp Ref Expression
1 ssdif0 ABAB=
2 1 necon3bbii ¬ABAB
3 difss ABA
4 frmin RFrARSeAABAAByABPredRABy=
5 eldif yAByA¬yB
6 5 anbi1i yABPredRABy=yA¬yBPredRABy=
7 anass yA¬yBPredRABy=yA¬yBPredRABy=
8 ancom ¬yBPredRABy=PredRABy=¬yB
9 indif2 R-1yAB=R-1yAB
10 df-pred PredRABy=ABR-1y
11 incom ABR-1y=R-1yAB
12 10 11 eqtri PredRABy=R-1yAB
13 df-pred PredRAy=AR-1y
14 incom AR-1y=R-1yA
15 13 14 eqtri PredRAy=R-1yA
16 15 difeq1i PredRAyB=R-1yAB
17 9 12 16 3eqtr4i PredRABy=PredRAyB
18 17 eqeq1i PredRABy=PredRAyB=
19 ssdif0 PredRAyBPredRAyB=
20 18 19 bitr4i PredRABy=PredRAyB
21 20 anbi1i PredRABy=¬yBPredRAyB¬yB
22 8 21 bitri ¬yBPredRABy=PredRAyB¬yB
23 22 anbi2i yA¬yBPredRABy=yAPredRAyB¬yB
24 6 7 23 3bitri yABPredRABy=yAPredRAyB¬yB
25 24 rexbii2 yABPredRABy=yAPredRAyB¬yB
26 rexanali yAPredRAyB¬yB¬yAPredRAyByB
27 25 26 bitri yABPredRABy=¬yAPredRAyByB
28 4 27 sylib RFrARSeAABAAB¬yAPredRAyByB
29 28 ex RFrARSeAABAAB¬yAPredRAyByB
30 3 29 mpani RFrARSeAAB¬yAPredRAyByB
31 2 30 biimtrid RFrARSeA¬AB¬yAPredRAyByB
32 31 con4d RFrARSeAyAPredRAyByBAB
33 32 imp RFrARSeAyAPredRAyByBAB
34 33 adantrl RFrARSeABAyAPredRAyByBAB
35 simprl RFrARSeABAyAPredRAyByBBA
36 34 35 eqssd RFrARSeABAyAPredRAyByBA=B