Metamath Proof Explorer


Theorem frlmlss

Description: The base set of the free module is a subspace of the power module. (Contributed by Stefan O'Rear, 1-Feb-2015)

Ref Expression
Hypotheses frlmval.f F=RfreeLModI
frlmpws.b B=BaseF
frlmlss.u U=LSubSpringLModR𝑠I
Assertion frlmlss RRingIWBU

Proof

Step Hyp Ref Expression
1 frlmval.f F=RfreeLModI
2 frlmpws.b B=BaseF
3 frlmlss.u U=LSubSpringLModR𝑠I
4 1 frlmval RRingIWF=RmI×ringLModR
5 4 fveq2d RRingIWBaseF=BaseRmI×ringLModR
6 2 5 eqtrid RRingIWB=BaseRmI×ringLModR
7 simpr RRingIWIW
8 simpl RRingIWRRing
9 rlmlmod RRingringLModRLMod
10 9 adantr RRingIWringLModRLMod
11 fconst6g ringLModRLModI×ringLModR:ILMod
12 10 11 syl RRingIWI×ringLModR:ILMod
13 fvex ringLModRV
14 13 fvconst2 iII×ringLModRi=ringLModR
15 14 adantl RRingIWiII×ringLModRi=ringLModR
16 15 fveq2d RRingIWiIScalarI×ringLModRi=ScalarringLModR
17 rlmsca RRingR=ScalarringLModR
18 17 ad2antrr RRingIWiIR=ScalarringLModR
19 16 18 eqtr4d RRingIWiIScalarI×ringLModRi=R
20 eqid R𝑠I×ringLModR=R𝑠I×ringLModR
21 eqid LSubSpR𝑠I×ringLModR=LSubSpR𝑠I×ringLModR
22 eqid BaseRmI×ringLModR=BaseRmI×ringLModR
23 7 8 12 19 20 21 22 dsmmlss RRingIWBaseRmI×ringLModRLSubSpR𝑠I×ringLModR
24 eqid ringLModR𝑠I=ringLModR𝑠I
25 eqid ScalarringLModR=ScalarringLModR
26 24 25 pwsval ringLModRVIWringLModR𝑠I=ScalarringLModR𝑠I×ringLModR
27 13 26 mpan IWringLModR𝑠I=ScalarringLModR𝑠I×ringLModR
28 27 adantl RRingIWringLModR𝑠I=ScalarringLModR𝑠I×ringLModR
29 17 eqcomd RRingScalarringLModR=R
30 29 adantr RRingIWScalarringLModR=R
31 30 oveq1d RRingIWScalarringLModR𝑠I×ringLModR=R𝑠I×ringLModR
32 28 31 eqtr2d RRingIWR𝑠I×ringLModR=ringLModR𝑠I
33 32 fveq2d RRingIWLSubSpR𝑠I×ringLModR=LSubSpringLModR𝑠I
34 33 3 eqtr4di RRingIWLSubSpR𝑠I×ringLModR=U
35 23 34 eleqtrd RRingIWBaseRmI×ringLModRU
36 6 35 eqeltrd RRingIWBU