| Step | Hyp | Ref | Expression | 
						
							| 1 |  | frmdmnd.m |  | 
						
							| 2 |  | frmdgsum.u |  | 
						
							| 3 |  | coeq2 |  | 
						
							| 4 |  | co02 |  | 
						
							| 5 | 3 4 | eqtrdi |  | 
						
							| 6 | 5 | oveq2d |  | 
						
							| 7 |  | id |  | 
						
							| 8 | 6 7 | eqeq12d |  | 
						
							| 9 | 8 | imbi2d |  | 
						
							| 10 |  | coeq2 |  | 
						
							| 11 | 10 | oveq2d |  | 
						
							| 12 |  | id |  | 
						
							| 13 | 11 12 | eqeq12d |  | 
						
							| 14 | 13 | imbi2d |  | 
						
							| 15 |  | coeq2 |  | 
						
							| 16 | 15 | oveq2d |  | 
						
							| 17 |  | id |  | 
						
							| 18 | 16 17 | eqeq12d |  | 
						
							| 19 | 18 | imbi2d |  | 
						
							| 20 |  | coeq2 |  | 
						
							| 21 | 20 | oveq2d |  | 
						
							| 22 |  | id |  | 
						
							| 23 | 21 22 | eqeq12d |  | 
						
							| 24 | 23 | imbi2d |  | 
						
							| 25 | 1 | frmd0 |  | 
						
							| 26 | 25 | gsum0 |  | 
						
							| 27 | 26 | a1i |  | 
						
							| 28 |  | oveq1 |  | 
						
							| 29 |  | simprl |  | 
						
							| 30 |  | simprr |  | 
						
							| 31 | 30 | s1cld |  | 
						
							| 32 | 2 | vrmdf |  | 
						
							| 33 | 32 | adantr |  | 
						
							| 34 |  | ccatco |  | 
						
							| 35 | 29 31 33 34 | syl3anc |  | 
						
							| 36 |  | s1co |  | 
						
							| 37 | 30 33 36 | syl2anc |  | 
						
							| 38 | 2 | vrmdval |  | 
						
							| 39 | 38 | adantrl |  | 
						
							| 40 | 39 | s1eqd |  | 
						
							| 41 | 37 40 | eqtrd |  | 
						
							| 42 | 41 | oveq2d |  | 
						
							| 43 | 35 42 | eqtrd |  | 
						
							| 44 | 43 | oveq2d |  | 
						
							| 45 | 1 | frmdmnd |  | 
						
							| 46 | 45 | adantr |  | 
						
							| 47 |  | wrdco |  | 
						
							| 48 | 29 33 47 | syl2anc |  | 
						
							| 49 |  | eqid |  | 
						
							| 50 | 1 49 | frmdbas |  | 
						
							| 51 | 50 | adantr |  | 
						
							| 52 |  | wrdeq |  | 
						
							| 53 | 51 52 | syl |  | 
						
							| 54 | 48 53 | eleqtrrd |  | 
						
							| 55 | 31 51 | eleqtrrd |  | 
						
							| 56 | 55 | s1cld |  | 
						
							| 57 |  | eqid |  | 
						
							| 58 | 49 57 | gsumccat |  | 
						
							| 59 | 46 54 56 58 | syl3anc |  | 
						
							| 60 | 49 | gsumws1 |  | 
						
							| 61 | 55 60 | syl |  | 
						
							| 62 | 61 | oveq2d |  | 
						
							| 63 | 49 | gsumwcl |  | 
						
							| 64 | 46 54 63 | syl2anc |  | 
						
							| 65 | 1 49 57 | frmdadd |  | 
						
							| 66 | 64 55 65 | syl2anc |  | 
						
							| 67 | 62 66 | eqtrd |  | 
						
							| 68 | 59 67 | eqtrd |  | 
						
							| 69 | 44 68 | eqtrd |  | 
						
							| 70 | 69 | eqeq1d |  | 
						
							| 71 | 28 70 | imbitrrid |  | 
						
							| 72 | 71 | expcom |  | 
						
							| 73 | 72 | a2d |  | 
						
							| 74 | 9 14 19 24 27 73 | wrdind |  | 
						
							| 75 | 74 | impcom |  |