Description: The principle of well-founded induction over a partial order. This theorem is a version of frind that does not require the axiom of infinity and can be used to prove wfi and tfi . (Contributed by Scott Fenton, 11-Feb-2022)
Ref | Expression | ||
---|---|---|---|
Assertion | frpoind | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssdif0 | |
|
2 | 1 | necon3bbii | |
3 | difss | |
|
4 | frpomin2 | |
|
5 | eldif | |
|
6 | 5 | anbi1i | |
7 | anass | |
|
8 | indif2 | |
|
9 | df-pred | |
|
10 | incom | |
|
11 | 9 10 | eqtri | |
12 | df-pred | |
|
13 | incom | |
|
14 | 12 13 | eqtri | |
15 | 14 | difeq1i | |
16 | 8 11 15 | 3eqtr4i | |
17 | 16 | eqeq1i | |
18 | ssdif0 | |
|
19 | 17 18 | bitr4i | |
20 | 19 | anbi1ci | |
21 | 20 | anbi2i | |
22 | 6 7 21 | 3bitri | |
23 | 22 | rexbii2 | |
24 | rexanali | |
|
25 | 23 24 | bitri | |
26 | 4 25 | sylib | |
27 | 26 | ex | |
28 | 3 27 | mpani | |
29 | 2 28 | biimtrid | |
30 | 29 | con4d | |
31 | 30 | imp | |
32 | 31 | adantrl | |
33 | simprl | |
|
34 | 32 33 | eqssd | |