Metamath Proof Explorer


Theorem frpoind

Description: The principle of well-founded induction over a partial order. This theorem is a version of frind that does not require the axiom of infinity and can be used to prove wfi and tfi . (Contributed by Scott Fenton, 11-Feb-2022)

Ref Expression
Assertion frpoind RFrARPoARSeABAyAPredRAyByBA=B

Proof

Step Hyp Ref Expression
1 ssdif0 ABAB=
2 1 necon3bbii ¬ABAB
3 difss ABA
4 frpomin2 RFrARPoARSeAABAAByABPredRABy=
5 eldif yAByA¬yB
6 5 anbi1i yABPredRABy=yA¬yBPredRABy=
7 anass yA¬yBPredRABy=yA¬yBPredRABy=
8 indif2 R-1yAB=R-1yAB
9 df-pred PredRABy=ABR-1y
10 incom ABR-1y=R-1yAB
11 9 10 eqtri PredRABy=R-1yAB
12 df-pred PredRAy=AR-1y
13 incom AR-1y=R-1yA
14 12 13 eqtri PredRAy=R-1yA
15 14 difeq1i PredRAyB=R-1yAB
16 8 11 15 3eqtr4i PredRABy=PredRAyB
17 16 eqeq1i PredRABy=PredRAyB=
18 ssdif0 PredRAyBPredRAyB=
19 17 18 bitr4i PredRABy=PredRAyB
20 19 anbi1ci ¬yBPredRABy=PredRAyB¬yB
21 20 anbi2i yA¬yBPredRABy=yAPredRAyB¬yB
22 6 7 21 3bitri yABPredRABy=yAPredRAyB¬yB
23 22 rexbii2 yABPredRABy=yAPredRAyB¬yB
24 rexanali yAPredRAyB¬yB¬yAPredRAyByB
25 23 24 bitri yABPredRABy=¬yAPredRAyByB
26 4 25 sylib RFrARPoARSeAABAAB¬yAPredRAyByB
27 26 ex RFrARPoARSeAABAAB¬yAPredRAyByB
28 3 27 mpani RFrARPoARSeAAB¬yAPredRAyByB
29 2 28 biimtrid RFrARPoARSeA¬AB¬yAPredRAyByB
30 29 con4d RFrARPoARSeAyAPredRAyByBAB
31 30 imp RFrARPoARSeAyAPredRAyByBAB
32 31 adantrl RFrARPoARSeABAyAPredRAyByBAB
33 simprl RFrARPoARSeABAyAPredRAyByBBA
34 32 33 eqssd RFrARPoARSeABAyAPredRAyByBA=B