Metamath Proof Explorer


Theorem fsn

Description: A function maps a singleton to a singleton iff it is the singleton of an ordered pair. (Contributed by NM, 10-Dec-2003)

Ref Expression
Hypotheses fsn.1 AV
fsn.2 BV
Assertion fsn F:ABF=AB

Proof

Step Hyp Ref Expression
1 fsn.1 AV
2 fsn.2 BV
3 opelf F:ABxyFxAyB
4 velsn xAx=A
5 velsn yBy=B
6 4 5 anbi12i xAyBx=Ay=B
7 3 6 sylib F:ABxyFx=Ay=B
8 7 ex F:ABxyFx=Ay=B
9 1 snid AA
10 feu F:ABAA∃!yBAyF
11 9 10 mpan2 F:AB∃!yBAyF
12 5 anbi1i yBAyFy=BAyF
13 opeq2 y=BAy=AB
14 13 eleq1d y=BAyFABF
15 14 pm5.32i y=BAyFy=BABF
16 15 biancomi y=BAyFABFy=B
17 12 16 bitr2i ABFy=ByBAyF
18 17 eubii ∃!yABFy=B∃!yyBAyF
19 2 eueqi ∃!yy=B
20 19 biantru ABFABF∃!yy=B
21 euanv ∃!yABFy=BABF∃!yy=B
22 20 21 bitr4i ABF∃!yABFy=B
23 df-reu ∃!yBAyF∃!yyBAyF
24 18 22 23 3bitr4i ABF∃!yBAyF
25 11 24 sylibr F:ABABF
26 opeq12 x=Ay=Bxy=AB
27 26 eleq1d x=Ay=BxyFABF
28 25 27 syl5ibrcom F:ABx=Ay=BxyF
29 8 28 impbid F:ABxyFx=Ay=B
30 opex xyV
31 30 elsn xyABxy=AB
32 1 2 opth2 xy=ABx=Ay=B
33 31 32 bitr2i x=Ay=BxyAB
34 29 33 bitrdi F:ABxyFxyAB
35 34 alrimivv F:ABxyxyFxyAB
36 frel F:ABRelF
37 1 2 relsnop RelAB
38 eqrel RelFRelABF=ABxyxyFxyAB
39 36 37 38 sylancl F:ABF=ABxyxyFxyAB
40 35 39 mpbird F:ABF=AB
41 1 2 f1osn AB:A1-1 ontoB
42 f1oeq1 F=ABF:A1-1 ontoBAB:A1-1 ontoB
43 41 42 mpbiri F=ABF:A1-1 ontoB
44 f1of F:A1-1 ontoBF:AB
45 43 44 syl F=ABF:AB
46 40 45 impbii F:ABF=AB