Metamath Proof Explorer


Theorem fsumcvg

Description: The sequence of partial sums of a finite sum converges to the whole sum. (Contributed by Mario Carneiro, 20-Apr-2014)

Ref Expression
Hypotheses summo.1 F = k if k A B 0
summo.2 φ k A B
sumrb.3 φ N M
fsumcvg.4 φ A M N
Assertion fsumcvg φ seq M + F seq M + F N

Proof

Step Hyp Ref Expression
1 summo.1 F = k if k A B 0
2 summo.2 φ k A B
3 sumrb.3 φ N M
4 fsumcvg.4 φ A M N
5 eqid N = N
6 eluzelz N M N
7 3 6 syl φ N
8 seqex seq M + F V
9 8 a1i φ seq M + F V
10 eqid M = M
11 eluzel2 N M M
12 3 11 syl φ M
13 eluzelz k M k
14 iftrue k A if k A B 0 = B
15 14 adantl φ k A if k A B 0 = B
16 15 2 eqeltrd φ k A if k A B 0
17 16 ex φ k A if k A B 0
18 iffalse ¬ k A if k A B 0 = 0
19 0cn 0
20 18 19 eqeltrdi ¬ k A if k A B 0
21 17 20 pm2.61d1 φ if k A B 0
22 1 fvmpt2 k if k A B 0 F k = if k A B 0
23 13 21 22 syl2anr φ k M F k = if k A B 0
24 21 adantr φ k M if k A B 0
25 23 24 eqeltrd φ k M F k
26 10 12 25 serf φ seq M + F : M
27 26 3 ffvelrnd φ seq M + F N
28 addid1 m m + 0 = m
29 28 adantl φ n N m m + 0 = m
30 3 adantr φ n N N M
31 simpr φ n N n N
32 27 adantr φ n N seq M + F N
33 elfzuz m N + 1 n m N + 1
34 eluzelz m N + 1 m
35 34 adantl φ m N + 1 m
36 4 sseld φ m A m M N
37 fznuz m M N ¬ m N + 1
38 36 37 syl6 φ m A ¬ m N + 1
39 38 con2d φ m N + 1 ¬ m A
40 39 imp φ m N + 1 ¬ m A
41 35 40 eldifd φ m N + 1 m A
42 fveqeq2 k = m F k = 0 F m = 0
43 eldifi k A k
44 eldifn k A ¬ k A
45 44 18 syl k A if k A B 0 = 0
46 45 19 eqeltrdi k A if k A B 0
47 43 46 22 syl2anc k A F k = if k A B 0
48 47 45 eqtrd k A F k = 0
49 42 48 vtoclga m A F m = 0
50 41 49 syl φ m N + 1 F m = 0
51 33 50 sylan2 φ m N + 1 n F m = 0
52 51 adantlr φ n N m N + 1 n F m = 0
53 29 30 31 32 52 seqid2 φ n N seq M + F N = seq M + F n
54 53 eqcomd φ n N seq M + F n = seq M + F N
55 5 7 9 27 54 climconst φ seq M + F seq M + F N