| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nn0p1nn |
|
| 2 |
1
|
adantr |
|
| 3 |
2
|
nncnd |
|
| 4 |
|
fzfid |
|
| 5 |
|
elfzelz |
|
| 6 |
5
|
zcnd |
|
| 7 |
|
simpl |
|
| 8 |
|
expcl |
|
| 9 |
6 7 8
|
syl2anr |
|
| 10 |
4 9
|
fsumcl |
|
| 11 |
2
|
nnne0d |
|
| 12 |
4 3 9
|
fsummulc2 |
|
| 13 |
|
bpolydif |
|
| 14 |
2 6 13
|
syl2an |
|
| 15 |
|
nn0cn |
|
| 16 |
15
|
ad2antrr |
|
| 17 |
|
ax-1cn |
|
| 18 |
|
pncan |
|
| 19 |
16 17 18
|
sylancl |
|
| 20 |
19
|
oveq2d |
|
| 21 |
20
|
oveq2d |
|
| 22 |
14 21
|
eqtrd |
|
| 23 |
22
|
sumeq2dv |
|
| 24 |
|
oveq2 |
|
| 25 |
|
oveq2 |
|
| 26 |
|
oveq2 |
|
| 27 |
|
oveq2 |
|
| 28 |
|
nn0z |
|
| 29 |
28
|
adantl |
|
| 30 |
|
peano2nn0 |
|
| 31 |
30
|
adantl |
|
| 32 |
|
nn0uz |
|
| 33 |
31 32
|
eleqtrdi |
|
| 34 |
|
peano2nn0 |
|
| 35 |
34
|
ad2antrr |
|
| 36 |
|
elfznn0 |
|
| 37 |
36
|
adantl |
|
| 38 |
37
|
nn0cnd |
|
| 39 |
|
bpolycl |
|
| 40 |
35 38 39
|
syl2anc |
|
| 41 |
24 25 26 27 29 33 40
|
telfsum2 |
|
| 42 |
12 23 41
|
3eqtr2d |
|
| 43 |
3 10 11 42
|
mvllmuld |
|