Description: A closed-form expression for the sum of K -th powers. (Contributed by Scott Fenton, 16-May-2014) This is Metamath 100 proof #77. (Revised by Mario Carneiro, 16-Jun-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | fsumkthpow | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0p1nn | |
|
2 | 1 | adantr | |
3 | 2 | nncnd | |
4 | fzfid | |
|
5 | elfzelz | |
|
6 | 5 | zcnd | |
7 | simpl | |
|
8 | expcl | |
|
9 | 6 7 8 | syl2anr | |
10 | 4 9 | fsumcl | |
11 | 2 | nnne0d | |
12 | 4 3 9 | fsummulc2 | |
13 | bpolydif | |
|
14 | 2 6 13 | syl2an | |
15 | nn0cn | |
|
16 | 15 | ad2antrr | |
17 | ax-1cn | |
|
18 | pncan | |
|
19 | 16 17 18 | sylancl | |
20 | 19 | oveq2d | |
21 | 20 | oveq2d | |
22 | 14 21 | eqtrd | |
23 | 22 | sumeq2dv | |
24 | oveq2 | |
|
25 | oveq2 | |
|
26 | oveq2 | |
|
27 | oveq2 | |
|
28 | nn0z | |
|
29 | 28 | adantl | |
30 | peano2nn0 | |
|
31 | 30 | adantl | |
32 | nn0uz | |
|
33 | 31 32 | eleqtrdi | |
34 | peano2nn0 | |
|
35 | 34 | ad2antrr | |
36 | elfznn0 | |
|
37 | 36 | adantl | |
38 | 37 | nn0cnd | |
39 | bpolycl | |
|
40 | 35 38 39 | syl2anc | |
41 | 24 25 26 27 29 33 40 | telfsum2 | |
42 | 12 23 41 | 3eqtr2d | |
43 | 3 10 11 42 | mvllmuld | |