Metamath Proof Explorer


Theorem fsumkthpow

Description: A closed-form expression for the sum of K -th powers. (Contributed by Scott Fenton, 16-May-2014) This is Metamath 100 proof #77. (Revised by Mario Carneiro, 16-Jun-2014)

Ref Expression
Assertion fsumkthpow K0M0n=0MnK=K+1BernPolyM+1K+1BernPoly0K+1

Proof

Step Hyp Ref Expression
1 nn0p1nn K0K+1
2 1 adantr K0M0K+1
3 2 nncnd K0M0K+1
4 fzfid K0M00MFin
5 elfzelz n0Mn
6 5 zcnd n0Mn
7 simpl K0M0K0
8 expcl nK0nK
9 6 7 8 syl2anr K0M0n0MnK
10 4 9 fsumcl K0M0n=0MnK
11 2 nnne0d K0M0K+10
12 4 3 9 fsummulc2 K0M0K+1n=0MnK=n=0MK+1nK
13 bpolydif K+1nK+1BernPolyn+1K+1BernPolyn=K+1nK+1-1
14 2 6 13 syl2an K0M0n0MK+1BernPolyn+1K+1BernPolyn=K+1nK+1-1
15 nn0cn K0K
16 15 ad2antrr K0M0n0MK
17 ax-1cn 1
18 pncan K1K+1-1=K
19 16 17 18 sylancl K0M0n0MK+1-1=K
20 19 oveq2d K0M0n0MnK+1-1=nK
21 20 oveq2d K0M0n0MK+1nK+1-1=K+1nK
22 14 21 eqtrd K0M0n0MK+1BernPolyn+1K+1BernPolyn=K+1nK
23 22 sumeq2dv K0M0n=0MK+1BernPolyn+1K+1BernPolyn=n=0MK+1nK
24 oveq2 k=nK+1BernPolyk=K+1BernPolyn
25 oveq2 k=n+1K+1BernPolyk=K+1BernPolyn+1
26 oveq2 k=0K+1BernPolyk=K+1BernPoly0
27 oveq2 k=M+1K+1BernPolyk=K+1BernPolyM+1
28 nn0z M0M
29 28 adantl K0M0M
30 peano2nn0 M0M+10
31 30 adantl K0M0M+10
32 nn0uz 0=0
33 31 32 eleqtrdi K0M0M+10
34 peano2nn0 K0K+10
35 34 ad2antrr K0M0k0M+1K+10
36 elfznn0 k0M+1k0
37 36 adantl K0M0k0M+1k0
38 37 nn0cnd K0M0k0M+1k
39 bpolycl K+10kK+1BernPolyk
40 35 38 39 syl2anc K0M0k0M+1K+1BernPolyk
41 24 25 26 27 29 33 40 telfsum2 K0M0n=0MK+1BernPolyn+1K+1BernPolyn=K+1BernPolyM+1K+1BernPoly0
42 12 23 41 3eqtr2d K0M0K+1n=0MnK=K+1BernPolyM+1K+1BernPoly0
43 3 10 11 42 mvllmuld K0M0n=0MnK=K+1BernPolyM+1K+1BernPoly0K+1