Metamath Proof Explorer


Theorem ftc1

Description: The Fundamental Theorem of Calculus, part one. The function formed by varying the right endpoint of an integral is differentiable at C with derivative F ( C ) if the original function is continuous at C . This is part of Metamath 100 proof #15. (Contributed by Mario Carneiro, 1-Sep-2014)

Ref Expression
Hypotheses ftc1.g G=xABAxFtdt
ftc1.a φA
ftc1.b φB
ftc1.le φAB
ftc1.s φABD
ftc1.d φD
ftc1.i φF𝐿1
ftc1.c φCAB
ftc1.f φFKCnPLC
ftc1.j J=L𝑡
ftc1.k K=L𝑡D
ftc1.l L=TopOpenfld
Assertion ftc1 φCGFC

Proof

Step Hyp Ref Expression
1 ftc1.g G=xABAxFtdt
2 ftc1.a φA
3 ftc1.b φB
4 ftc1.le φAB
5 ftc1.s φABD
6 ftc1.d φD
7 ftc1.i φF𝐿1
8 ftc1.c φCAB
9 ftc1.f φFKCnPLC
10 ftc1.j J=L𝑡
11 ftc1.k K=L𝑡D
12 ftc1.l L=TopOpenfld
13 12 tgioo2 topGenran.=L𝑡
14 10 13 eqtr4i J=topGenran.
15 retop topGenran.Top
16 14 15 eqeltri JTop
17 16 a1i φJTop
18 iccssre ABAB
19 2 3 18 syl2anc φAB
20 iooretop ABtopGenran.
21 20 14 eleqtrri ABJ
22 21 a1i φABJ
23 ioossicc ABAB
24 23 a1i φABAB
25 uniretop =topGenran.
26 14 unieqi J=topGenran.
27 25 26 eqtr4i =J
28 27 ssntr JTopABABJABABABintJAB
29 17 19 22 24 28 syl22anc φABintJAB
30 29 8 sseldd φCintJAB
31 eqid zABCGzGCzC=zABCGzGCzC
32 1 2 3 4 5 6 7 8 9 10 11 12 31 ftc1lem6 φFCzABCGzGCzClimC
33 ax-resscn
34 33 a1i φ
35 1 2 3 4 5 6 7 8 9 10 11 12 ftc1lem3 φF:D
36 1 2 3 4 5 6 7 35 ftc1lem2 φG:AB
37 10 12 31 34 36 19 eldv φCGFCCintJABFCzABCGzGCzClimC
38 30 32 37 mpbir2and φCGFC