| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fucofvalne.c |
|
| 2 |
|
fucofvalne.e |
|
| 3 |
|
fucofvalne.o |
Could not format ( ph -> ( <. C , D >. o.F E ) = .o. ) : No typesetting found for |- ( ph -> ( <. C , D >. o.F E ) = .o. ) with typecode |- |
| 4 |
|
fucofvalne.w |
|
| 5 |
|
0ex |
|
| 6 |
5
|
a1i |
|
| 7 |
|
1st0 |
|
| 8 |
7
|
a1i |
|
| 9 |
|
2nd0 |
|
| 10 |
9
|
a1i |
|
| 11 |
|
opprc |
|
| 12 |
1 11
|
syl |
|
| 13 |
12
|
oveq1d |
Could not format ( ph -> ( <. C , D >. o.F E ) = ( (/) o.F E ) ) : No typesetting found for |- ( ph -> ( <. C , D >. o.F E ) = ( (/) o.F E ) ) with typecode |- |
| 14 |
13 3
|
eqtr3d |
Could not format ( ph -> ( (/) o.F E ) = .o. ) : No typesetting found for |- ( ph -> ( (/) o.F E ) = .o. ) with typecode |- |
| 15 |
|
eqidd |
|
| 16 |
6 8 10 2 14 15
|
fucofvalg |
Could not format ( ph -> .o. = <. ( o.func |` ( ( (/) Func E ) X. ( (/) Func (/) ) ) ) , ( u e. ( ( (/) Func E ) X. ( (/) Func (/) ) ) , v e. ( ( (/) Func E ) X. ( (/) Func (/) ) ) |-> [_ ( 1st ` ( 2nd ` u ) ) / f ]_ [_ ( 1st ` ( 1st ` u ) ) / k ]_ [_ ( 2nd ` ( 1st ` u ) ) / l ]_ [_ ( 1st ` ( 2nd ` v ) ) / m ]_ [_ ( 1st ` ( 1st ` v ) ) / r ]_ ( b e. ( ( 1st ` u ) ( (/) Nat E ) ( 1st ` v ) ) , a e. ( ( 2nd ` u ) ( (/) Nat (/) ) ( 2nd ` v ) ) |-> ( x e. ( Base ` (/) ) |-> ( ( b ` ( m ` x ) ) ( <. ( k ` ( f ` x ) ) , ( k ` ( m ` x ) ) >. ( comp ` E ) ( r ` ( m ` x ) ) ) ( ( ( f ` x ) l ( m ` x ) ) ` ( a ` x ) ) ) ) ) ) >. ) : No typesetting found for |- ( ph -> .o. = <. ( o.func |` ( ( (/) Func E ) X. ( (/) Func (/) ) ) ) , ( u e. ( ( (/) Func E ) X. ( (/) Func (/) ) ) , v e. ( ( (/) Func E ) X. ( (/) Func (/) ) ) |-> [_ ( 1st ` ( 2nd ` u ) ) / f ]_ [_ ( 1st ` ( 1st ` u ) ) / k ]_ [_ ( 2nd ` ( 1st ` u ) ) / l ]_ [_ ( 1st ` ( 2nd ` v ) ) / m ]_ [_ ( 1st ` ( 1st ` v ) ) / r ]_ ( b e. ( ( 1st ` u ) ( (/) Nat E ) ( 1st ` v ) ) , a e. ( ( 2nd ` u ) ( (/) Nat (/) ) ( 2nd ` v ) ) |-> ( x e. ( Base ` (/) ) |-> ( ( b ` ( m ` x ) ) ( <. ( k ` ( f ` x ) ) , ( k ` ( m ` x ) ) >. ( comp ` E ) ( r ` ( m ` x ) ) ) ( ( ( f ` x ) l ( m ` x ) ) ` ( a ` x ) ) ) ) ) ) >. ) with typecode |- |
| 17 |
|
opex |
|
| 18 |
17
|
snnz |
|
| 19 |
18
|
neii |
|
| 20 |
|
ioran |
|
| 21 |
|
xpeq0 |
|
| 22 |
21
|
biimpi |
|
| 23 |
22
|
con3i |
|
| 24 |
20 23
|
sylbir |
|
| 25 |
19 19 24
|
mp2an |
|
| 26 |
2
|
0func |
|
| 27 |
|
0cat |
|
| 28 |
27
|
a1i |
|
| 29 |
28
|
0func |
|
| 30 |
26 29
|
xpeq12d |
|
| 31 |
|
df-func |
|
| 32 |
31
|
reldmmpo |
|
| 33 |
|
0nelrel0 |
|
| 34 |
32 33
|
ax-mp |
|
| 35 |
12
|
eleq1d |
|
| 36 |
34 35
|
mtbiri |
|
| 37 |
|
df-ov |
|
| 38 |
|
ndmfv |
|
| 39 |
37 38
|
eqtrid |
|
| 40 |
39
|
xpeq2d |
|
| 41 |
|
xp0 |
|
| 42 |
40 41
|
eqtrdi |
|
| 43 |
36 42
|
syl |
|
| 44 |
30 43
|
eqeq12d |
|
| 45 |
25 44
|
mtbiri |
|
| 46 |
|
rescofuf |
|
| 47 |
46
|
fdmi |
|
| 48 |
|
rescofuf |
|
| 49 |
48
|
fdmi |
|
| 50 |
47 49
|
eqeq12i |
|
| 51 |
50
|
biimpi |
|
| 52 |
51
|
con3i |
|
| 53 |
|
dmeq |
|
| 54 |
53
|
con3i |
|
| 55 |
45 52 54
|
3syl |
|
| 56 |
55
|
neqned |
|
| 57 |
4
|
reseq2d |
|
| 58 |
56 57
|
neeqtrrd |
|
| 59 |
|
ovex |
|
| 60 |
|
ovex |
|
| 61 |
59 60
|
xpex |
|
| 62 |
|
fex |
|
| 63 |
46 61 62
|
mp2an |
|
| 64 |
61 61
|
mpoex |
|
| 65 |
|
opth1neg |
|
| 66 |
63 64 65
|
mp2an |
|
| 67 |
58 66
|
syl |
|
| 68 |
16 67
|
eqnetrd |
Could not format ( ph -> .o. =/= <. ( o.func |` W ) , ( u e. W , v e. W |-> [_ ( 1st ` ( 2nd ` u ) ) / f ]_ [_ ( 1st ` ( 1st ` u ) ) / k ]_ [_ ( 2nd ` ( 1st ` u ) ) / l ]_ [_ ( 1st ` ( 2nd ` v ) ) / m ]_ [_ ( 1st ` ( 1st ` v ) ) / r ]_ ( b e. ( ( 1st ` u ) ( D Nat E ) ( 1st ` v ) ) , a e. ( ( 2nd ` u ) ( C Nat D ) ( 2nd ` v ) ) |-> ( x e. ( Base ` C ) |-> ( ( b ` ( m ` x ) ) ( <. ( k ` ( f ` x ) ) , ( k ` ( m ` x ) ) >. ( comp ` E ) ( r ` ( m ` x ) ) ) ( ( ( f ` x ) l ( m ` x ) ) ` ( a ` x ) ) ) ) ) ) >. ) : No typesetting found for |- ( ph -> .o. =/= <. ( o.func |` W ) , ( u e. W , v e. W |-> [_ ( 1st ` ( 2nd ` u ) ) / f ]_ [_ ( 1st ` ( 1st ` u ) ) / k ]_ [_ ( 2nd ` ( 1st ` u ) ) / l ]_ [_ ( 1st ` ( 2nd ` v ) ) / m ]_ [_ ( 1st ` ( 1st ` v ) ) / r ]_ ( b e. ( ( 1st ` u ) ( D Nat E ) ( 1st ` v ) ) , a e. ( ( 2nd ` u ) ( C Nat D ) ( 2nd ` v ) ) |-> ( x e. ( Base ` C ) |-> ( ( b ` ( m ` x ) ) ( <. ( k ` ( f ` x ) ) , ( k ` ( m ` x ) ) >. ( comp ` E ) ( r ` ( m ` x ) ) ) ( ( ( f ` x ) l ( m ` x ) ) ` ( a ` x ) ) ) ) ) ) >. ) with typecode |- |