Description: A function with a domain containing (at least) two different elements is not an ordered pair. This stronger version of fundmge2nop (with the less restrictive requirement that ( G \ { (/) } ) needs to be a function instead of G ) is useful for proofs for extensible structures, see structn0fun . (Contributed by AV, 12-Oct-2020) (Revised by AV, 7-Jun-2021) (Proof shortened by AV, 15-Nov-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | fundmge2nop0 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmexg | |
|
2 | hashge2el2dif | |
|
3 | 2 | ex | |
4 | 1 3 | syl | |
5 | df-ne | |
|
6 | elvv | |
|
7 | difeq1 | |
|
8 | 7 | funeqd | |
9 | opwo0id | |
|
10 | 9 | eqcomi | |
11 | 10 | funeqi | |
12 | dmeq | |
|
13 | 12 | eleq2d | |
14 | 12 | eleq2d | |
15 | 13 14 | anbi12d | |
16 | eqid | |
|
17 | vex | |
|
18 | vex | |
|
19 | 16 17 18 | funopdmsn | |
20 | 19 | 3expb | |
21 | 20 | expcom | |
22 | 15 21 | syl6bi | |
23 | 22 | com23 | |
24 | 11 23 | biimtrid | |
25 | 8 24 | sylbid | |
26 | 25 | impcomd | |
27 | 26 | exlimivv | |
28 | 27 | com12 | |
29 | 6 28 | biimtrid | |
30 | 29 | con3d | |
31 | 30 | ex | |
32 | 31 | com23 | |
33 | 5 32 | biimtrid | |
34 | 33 | rexlimivv | |
35 | 4 34 | syl6 | |
36 | 35 | com13 | |
37 | 36 | imp | |
38 | prcnel | |
|
39 | 37 38 | pm2.61d1 | |