Metamath Proof Explorer


Theorem fundmge2nop0

Description: A function with a domain containing (at least) two different elements is not an ordered pair. This stronger version of fundmge2nop (with the less restrictive requirement that ( G \ { (/) } ) needs to be a function instead of G ) is useful for proofs for extensible structures, see structn0fun . (Contributed by AV, 12-Oct-2020) (Revised by AV, 7-Jun-2021) (Proof shortened by AV, 15-Nov-2021)

Ref Expression
Assertion fundmge2nop0 FunG2domG¬GV×V

Proof

Step Hyp Ref Expression
1 dmexg GVdomGV
2 hashge2el2dif domGV2domGadomGbdomGab
3 2 ex domGV2domGadomGbdomGab
4 1 3 syl GV2domGadomGbdomGab
5 df-ne ab¬a=b
6 elvv GV×VxyG=xy
7 difeq1 G=xyG=xy
8 7 funeqd G=xyFunGFunxy
9 opwo0id xy=xy
10 9 eqcomi xy=xy
11 10 funeqi FunxyFunxy
12 dmeq G=xydomG=domxy
13 12 eleq2d G=xyadomGadomxy
14 12 eleq2d G=xybdomGbdomxy
15 13 14 anbi12d G=xyadomGbdomGadomxybdomxy
16 eqid xy=xy
17 vex xV
18 vex yV
19 16 17 18 funopdmsn Funxyadomxybdomxya=b
20 19 3expb Funxyadomxybdomxya=b
21 20 expcom adomxybdomxyFunxya=b
22 15 21 syl6bi G=xyadomGbdomGFunxya=b
23 22 com23 G=xyFunxyadomGbdomGa=b
24 11 23 biimtrid G=xyFunxyadomGbdomGa=b
25 8 24 sylbid G=xyFunGadomGbdomGa=b
26 25 impcomd G=xyadomGbdomGFunGa=b
27 26 exlimivv xyG=xyadomGbdomGFunGa=b
28 27 com12 adomGbdomGFunGxyG=xya=b
29 6 28 biimtrid adomGbdomGFunGGV×Va=b
30 29 con3d adomGbdomGFunG¬a=b¬GV×V
31 30 ex adomGbdomGFunG¬a=b¬GV×V
32 31 com23 adomGbdomG¬a=bFunG¬GV×V
33 5 32 biimtrid adomGbdomGabFunG¬GV×V
34 33 rexlimivv adomGbdomGabFunG¬GV×V
35 4 34 syl6 GV2domGFunG¬GV×V
36 35 com13 FunG2domGGV¬GV×V
37 36 imp FunG2domGGV¬GV×V
38 prcnel ¬GV¬GV×V
39 37 38 pm2.61d1 FunG2domG¬GV×V