Description: The union of functions with disjoint domains is a function. Theorem 4.6 of Monk1 p. 43. (Contributed by NM, 12-Aug-1994)
Ref | Expression | ||
---|---|---|---|
Assertion | funun | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funrel | |
|
2 | funrel | |
|
3 | 1 2 | anim12i | |
4 | relun | |
|
5 | 3 4 | sylibr | |
6 | 5 | adantr | |
7 | elun | |
|
8 | elun | |
|
9 | 7 8 | anbi12i | |
10 | anddi | |
|
11 | 9 10 | bitri | |
12 | disj1 | |
|
13 | 12 | biimpi | |
14 | 13 | 19.21bi | |
15 | imnan | |
|
16 | 14 15 | sylib | |
17 | vex | |
|
18 | vex | |
|
19 | 17 18 | opeldm | |
20 | vex | |
|
21 | 17 20 | opeldm | |
22 | 19 21 | anim12i | |
23 | 16 22 | nsyl | |
24 | orel2 | |
|
25 | 23 24 | syl | |
26 | 14 | con2d | |
27 | imnan | |
|
28 | 26 27 | sylib | |
29 | 17 18 | opeldm | |
30 | 17 20 | opeldm | |
31 | 29 30 | anim12i | |
32 | 28 31 | nsyl | |
33 | orel1 | |
|
34 | 32 33 | syl | |
35 | 25 34 | orim12d | |
36 | 35 | adantl | |
37 | 11 36 | biimtrid | |
38 | dffun4 | |
|
39 | 38 | simprbi | |
40 | 39 | 19.21bi | |
41 | 40 | 19.21bbi | |
42 | dffun4 | |
|
43 | 42 | simprbi | |
44 | 43 | 19.21bi | |
45 | 44 | 19.21bbi | |
46 | 41 45 | jaao | |
47 | 46 | adantr | |
48 | 37 47 | syld | |
49 | 48 | alrimiv | |
50 | 49 | alrimivv | |
51 | dffun4 | |
|
52 | 6 50 51 | sylanbrc | |