Metamath Proof Explorer


Theorem funun

Description: The union of functions with disjoint domains is a function. Theorem 4.6 of Monk1 p. 43. (Contributed by NM, 12-Aug-1994)

Ref Expression
Assertion funun FunFFunGdomFdomG=FunFG

Proof

Step Hyp Ref Expression
1 funrel FunFRelF
2 funrel FunGRelG
3 1 2 anim12i FunFFunGRelFRelG
4 relun RelFGRelFRelG
5 3 4 sylibr FunFFunGRelFG
6 5 adantr FunFFunGdomFdomG=RelFG
7 elun xyFGxyFxyG
8 elun xzFGxzFxzG
9 7 8 anbi12i xyFGxzFGxyFxyGxzFxzG
10 anddi xyFxyGxzFxzGxyFxzFxyFxzGxyGxzFxyGxzG
11 9 10 bitri xyFGxzFGxyFxzFxyFxzGxyGxzFxyGxzG
12 disj1 domFdomG=xxdomF¬xdomG
13 12 biimpi domFdomG=xxdomF¬xdomG
14 13 19.21bi domFdomG=xdomF¬xdomG
15 imnan xdomF¬xdomG¬xdomFxdomG
16 14 15 sylib domFdomG=¬xdomFxdomG
17 vex xV
18 vex yV
19 17 18 opeldm xyFxdomF
20 vex zV
21 17 20 opeldm xzGxdomG
22 19 21 anim12i xyFxzGxdomFxdomG
23 16 22 nsyl domFdomG=¬xyFxzG
24 orel2 ¬xyFxzGxyFxzFxyFxzGxyFxzF
25 23 24 syl domFdomG=xyFxzFxyFxzGxyFxzF
26 14 con2d domFdomG=xdomG¬xdomF
27 imnan xdomG¬xdomF¬xdomGxdomF
28 26 27 sylib domFdomG=¬xdomGxdomF
29 17 18 opeldm xyGxdomG
30 17 20 opeldm xzFxdomF
31 29 30 anim12i xyGxzFxdomGxdomF
32 28 31 nsyl domFdomG=¬xyGxzF
33 orel1 ¬xyGxzFxyGxzFxyGxzGxyGxzG
34 32 33 syl domFdomG=xyGxzFxyGxzGxyGxzG
35 25 34 orim12d domFdomG=xyFxzFxyFxzGxyGxzFxyGxzGxyFxzFxyGxzG
36 35 adantl FunFFunGdomFdomG=xyFxzFxyFxzGxyGxzFxyGxzGxyFxzFxyGxzG
37 11 36 biimtrid FunFFunGdomFdomG=xyFGxzFGxyFxzFxyGxzG
38 dffun4 FunFRelFxyzxyFxzFy=z
39 38 simprbi FunFxyzxyFxzFy=z
40 39 19.21bi FunFyzxyFxzFy=z
41 40 19.21bbi FunFxyFxzFy=z
42 dffun4 FunGRelGxyzxyGxzGy=z
43 42 simprbi FunGxyzxyGxzGy=z
44 43 19.21bi FunGyzxyGxzGy=z
45 44 19.21bbi FunGxyGxzGy=z
46 41 45 jaao FunFFunGxyFxzFxyGxzGy=z
47 46 adantr FunFFunGdomFdomG=xyFxzFxyGxzGy=z
48 37 47 syld FunFFunGdomFdomG=xyFGxzFGy=z
49 48 alrimiv FunFFunGdomFdomG=zxyFGxzFGy=z
50 49 alrimivv FunFFunGdomFdomG=xyzxyFGxzFGy=z
51 dffun4 FunFGRelFGxyzxyFGxzFGy=z
52 6 50 51 sylanbrc FunFFunGdomFdomG=FunFG