Metamath Proof Explorer


Theorem fvn0ssdmfun

Description: If a class' function values for certain arguments is not the empty set, the arguments are contained in the domain of the class, and the class restricted to the arguments is a function, analogous to fvfundmfvn0 . (Contributed by AV, 27-Jan-2020) (Proof shortened by Peter Mazsa, 2-Oct-2022)

Ref Expression
Assertion fvn0ssdmfun aDFaDdomFFunFD

Proof

Step Hyp Ref Expression
1 fvfundmfvn0 FaadomFFunFa
2 1 ralimi aDFaaDadomFFunFa
3 r19.26 aDadomFFunFaaDadomFaDFunFa
4 eleq1w a=padomFpdomF
5 4 rspccv aDadomFpDpdomF
6 5 ssrdv aDadomFDdomF
7 funrel FunFaRelFa
8 7 ralimi aDFunFaaDRelFa
9 reliun RelaDFaaDRelFa
10 8 9 sylibr aDFunFaRelaDFa
11 sneq a=xa=x
12 11 reseq2d a=xFa=Fx
13 12 funeqd a=xFunFaFunFx
14 13 rspcva xDaDFunFaFunFx
15 dffun5 FunFxRelFxwyzwzFxz=y
16 vex xV
17 16 elsnres wzFxawz=xaxaF
18 17 imbi1i wzFxz=yawz=xaxaFz=y
19 18 albii zwzFxz=yzawz=xaxaFz=y
20 19 exbii yzwzFxz=yyzawz=xaxaFz=y
21 20 albii wyzwzFxz=ywyzawz=xaxaFz=y
22 equcom a=zz=a
23 opeq12 w=xz=awz=xa
24 23 ex w=xz=awz=xa
25 22 24 biimtrid w=xa=zwz=xa
26 25 adantr w=xxzFa=zwz=xa
27 26 impcom a=zw=xxzFwz=xa
28 opeq2 z=axz=xa
29 28 equcoms a=zxz=xa
30 29 eleq1d a=zxzFxaF
31 30 biimpcd xzFa=zxaF
32 31 adantl w=xxzFa=zxaF
33 32 impcom a=zw=xxzFxaF
34 27 33 jca a=zw=xxzFwz=xaxaF
35 34 ex a=zw=xxzFwz=xaxaF
36 35 spimevw w=xxzFawz=xaxaF
37 36 ex w=xxzFawz=xaxaF
38 37 imim1d w=xawz=xaxaFz=yxzFz=y
39 38 alimdv w=xzawz=xaxaFz=yzxzFz=y
40 39 eximdv w=xyzawz=xaxaFz=yyzxzFz=y
41 40 spimvw wyzawz=xaxaFz=yyzxzFz=y
42 21 41 sylbi wyzwzFxz=yyzxzFz=y
43 15 42 simplbiim FunFxyzxzFz=y
44 14 43 syl xDaDFunFayzxzFz=y
45 44 expcom aDFunFaxDyzxzFz=y
46 impexp xDxzFz=yxDxzFz=y
47 46 albii zxDxzFz=yzxDxzFz=y
48 47 exbii yzxDxzFz=yyzxDxzFz=y
49 19.21v zxDxzFz=yxDzxzFz=y
50 49 exbii yzxDxzFz=yyxDzxzFz=y
51 19.37v yxDzxzFz=yxDyzxzFz=y
52 48 50 51 3bitri yzxDxzFz=yxDyzxzFz=y
53 45 52 sylibr aDFunFayzxDxzFz=y
54 53 alrimiv aDFunFaxyzxDxzFz=y
55 resiun2 FaDa=aDFa
56 55 eqcomi aDFa=FaDa
57 56 eleq2i xzaDFaxzFaDa
58 iunid aDa=D
59 58 reseq2i FaDa=FD
60 59 eleq2i xzFaDaxzFD
61 vex zV
62 61 opelresi xzFDxDxzF
63 57 60 62 3bitri xzaDFaxDxzF
64 63 imbi1i xzaDFaz=yxDxzFz=y
65 64 albii zxzaDFaz=yzxDxzFz=y
66 65 exbii yzxzaDFaz=yyzxDxzFz=y
67 66 albii xyzxzaDFaz=yxyzxDxzFz=y
68 54 67 sylibr aDFunFaxyzxzaDFaz=y
69 dffun5 FunaDFaRelaDFaxyzxzaDFaz=y
70 10 68 69 sylanbrc aDFunFaFunaDFa
71 58 eqcomi D=aDa
72 71 reseq2i FD=FaDa
73 72 funeqi FunFDFunFaDa
74 55 funeqi FunFaDaFunaDFa
75 73 74 bitri FunFDFunaDFa
76 70 75 sylibr aDFunFaFunFD
77 6 76 anim12i aDadomFaDFunFaDdomFFunFD
78 3 77 sylbi aDadomFFunFaDdomFFunFD
79 2 78 syl aDFaDdomFFunFD