Metamath Proof Explorer


Theorem fvprmselgcd1

Description: The greatest common divisor of two values of the prime selection function for different arguments is 1. (Contributed by AV, 19-Aug-2020)

Ref Expression
Hypothesis fvprmselelfz.f F=mifmm1
Assertion fvprmselgcd1 X1NY1NXYFXgcdFY=1

Proof

Step Hyp Ref Expression
1 fvprmselelfz.f F=mifmm1
2 eleq1 m=XmX
3 id m=Xm=X
4 2 3 ifbieq1d m=Xifmm1=ifXX1
5 iftrue XifXX1=X
6 5 ad2antrr XYX1NY1NXYifXX1=X
7 4 6 sylan9eqr XYX1NY1NXYm=Xifmm1=X
8 elfznn X1NX
9 8 3ad2ant1 X1NY1NXYX
10 9 adantl XYX1NY1NXYX
11 1 7 10 10 fvmptd2 XYX1NY1NXYFX=X
12 eleq1 m=YmY
13 id m=Ym=Y
14 12 13 ifbieq1d m=Yifmm1=ifYY1
15 iftrue YifYY1=Y
16 15 ad2antlr XYX1NY1NXYifYY1=Y
17 14 16 sylan9eqr XYX1NY1NXYm=Yifmm1=Y
18 elfznn Y1NY
19 18 3ad2ant2 X1NY1NXYY
20 19 adantl XYX1NY1NXYY
21 1 17 20 20 fvmptd2 XYX1NY1NXYFY=Y
22 11 21 oveq12d XYX1NY1NXYFXgcdFY=XgcdY
23 prmrp XYXgcdY=1XY
24 23 biimprcd XYXYXgcdY=1
25 24 3ad2ant3 X1NY1NXYXYXgcdY=1
26 25 impcom XYX1NY1NXYXgcdY=1
27 22 26 eqtrd XYX1NY1NXYFXgcdFY=1
28 27 ex XYX1NY1NXYFXgcdFY=1
29 5 ad2antrr X¬YX1NY1NXYifXX1=X
30 4 29 sylan9eqr X¬YX1NY1NXYm=Xifmm1=X
31 9 adantl X¬YX1NY1NXYX
32 1 30 31 31 fvmptd2 X¬YX1NY1NXYFX=X
33 iffalse ¬YifYY1=1
34 33 ad2antlr X¬YX1NY1NXYifYY1=1
35 14 34 sylan9eqr X¬YX1NY1NXYm=Yifmm1=1
36 19 adantl X¬YX1NY1NXYY
37 1nn 1
38 37 a1i X¬YX1NY1NXY1
39 1 35 36 38 fvmptd2 X¬YX1NY1NXYFY=1
40 32 39 oveq12d X¬YX1NY1NXYFXgcdFY=Xgcd1
41 prmz XX
42 gcd1 XXgcd1=1
43 41 42 syl XXgcd1=1
44 43 ad2antrr X¬YX1NY1NXYXgcd1=1
45 40 44 eqtrd X¬YX1NY1NXYFXgcdFY=1
46 45 ex X¬YX1NY1NXYFXgcdFY=1
47 iffalse ¬XifXX1=1
48 47 ad2antrr ¬XYX1NY1NXYifXX1=1
49 4 48 sylan9eqr ¬XYX1NY1NXYm=Xifmm1=1
50 9 adantl ¬XYX1NY1NXYX
51 37 a1i ¬XYX1NY1NXY1
52 1 49 50 51 fvmptd2 ¬XYX1NY1NXYFX=1
53 15 ad2antlr ¬XYX1NY1NXYifYY1=Y
54 14 53 sylan9eqr ¬XYX1NY1NXYm=Yifmm1=Y
55 19 adantl ¬XYX1NY1NXYY
56 1 54 55 55 fvmptd2 ¬XYX1NY1NXYFY=Y
57 52 56 oveq12d ¬XYX1NY1NXYFXgcdFY=1gcdY
58 prmz YY
59 1gcd Y1gcdY=1
60 58 59 syl Y1gcdY=1
61 60 ad2antlr ¬XYX1NY1NXY1gcdY=1
62 57 61 eqtrd ¬XYX1NY1NXYFXgcdFY=1
63 62 ex ¬XYX1NY1NXYFXgcdFY=1
64 47 ad2antrr ¬X¬YX1NY1NXYifXX1=1
65 4 64 sylan9eqr ¬X¬YX1NY1NXYm=Xifmm1=1
66 9 adantl ¬X¬YX1NY1NXYX
67 37 a1i ¬X¬YX1NY1NXY1
68 1 65 66 67 fvmptd2 ¬X¬YX1NY1NXYFX=1
69 33 ad2antlr ¬X¬YX1NY1NXYifYY1=1
70 14 69 sylan9eqr ¬X¬YX1NY1NXYm=Yifmm1=1
71 19 adantl ¬X¬YX1NY1NXYY
72 1 70 71 67 fvmptd2 ¬X¬YX1NY1NXYFY=1
73 68 72 oveq12d ¬X¬YX1NY1NXYFXgcdFY=1gcd1
74 1z 1
75 1gcd 11gcd1=1
76 74 75 mp1i ¬X¬YX1NY1NXY1gcd1=1
77 73 76 eqtrd ¬X¬YX1NY1NXYFXgcdFY=1
78 77 ex ¬X¬YX1NY1NXYFXgcdFY=1
79 28 46 63 78 4cases X1NY1NXYFXgcdFY=1