Description: Join a predecessor and a successor to the beginning and the end of an open integer interval. This theorem holds even if N = M (then ( M ... N ) = { M } = ( { M } u. (/) ) u. { M } ) . (Contributed by AV, 14-Jul-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | fzopredsuc | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unidm | |
|
2 | 1 | eqcomi | |
3 | oveq1 | |
|
4 | fzsn | |
|
5 | 3 4 | sylan9eqr | |
6 | sneq | |
|
7 | oveq1 | |
|
8 | 7 | oveq1d | |
9 | 6 8 | uneq12d | |
10 | 9 | uneq1d | |
11 | zre | |
|
12 | 11 | lep1d | |
13 | peano2z | |
|
14 | 13 | zred | |
15 | 11 14 | lenltd | |
16 | 12 15 | mpbid | |
17 | fzonlt0 | |
|
18 | 13 17 | mpancom | |
19 | 16 18 | mpbid | |
20 | 19 | uneq2d | |
21 | un0 | |
|
22 | 20 21 | eqtrdi | |
23 | 22 | uneq1d | |
24 | 10 23 | sylan9eqr | |
25 | 2 5 24 | 3eqtr4a | |
26 | 25 | ex | |
27 | eluzelz | |
|
28 | 26 27 | syl11 | |
29 | fzisfzounsn | |
|
30 | 29 | adantl | |
31 | eluz2 | |
|
32 | simpl1 | |
|
33 | simpl2 | |
|
34 | nesym | |
|
35 | zre | |
|
36 | ltlen | |
|
37 | 35 11 36 | syl2an | |
38 | 37 | biimprd | |
39 | 38 | exp4b | |
40 | 39 | 3imp | |
41 | 34 40 | biimtrrid | |
42 | 41 | imp | |
43 | 32 33 42 | 3jca | |
44 | 43 | ex | |
45 | 31 44 | sylbi | |
46 | 45 | impcom | |
47 | fzopred | |
|
48 | 46 47 | syl | |
49 | 48 | uneq1d | |
50 | 30 49 | eqtrd | |
51 | 50 | ex | |
52 | 28 51 | pm2.61i | |