Metamath Proof Explorer


Theorem fzopredsuc

Description: Join a predecessor and a successor to the beginning and the end of an open integer interval. This theorem holds even if N = M (then ( M ... N ) = { M } = ( { M } u. (/) ) u. { M } ) . (Contributed by AV, 14-Jul-2020)

Ref Expression
Assertion fzopredsuc NMMN=MM+1..^NN

Proof

Step Hyp Ref Expression
1 unidm NN=N
2 1 eqcomi N=NN
3 oveq1 M=NMN=NN
4 fzsn NNN=N
5 3 4 sylan9eqr NM=NMN=N
6 sneq M=NM=N
7 oveq1 M=NM+1=N+1
8 7 oveq1d M=NM+1..^N=N+1..^N
9 6 8 uneq12d M=NMM+1..^N=NN+1..^N
10 9 uneq1d M=NMM+1..^NN=NN+1..^NN
11 zre NN
12 11 lep1d NNN+1
13 peano2z NN+1
14 13 zred NN+1
15 11 14 lenltd NNN+1¬N+1<N
16 12 15 mpbid N¬N+1<N
17 fzonlt0 N+1N¬N+1<NN+1..^N=
18 13 17 mpancom N¬N+1<NN+1..^N=
19 16 18 mpbid NN+1..^N=
20 19 uneq2d NNN+1..^N=N
21 un0 N=N
22 20 21 eqtrdi NNN+1..^N=N
23 22 uneq1d NNN+1..^NN=NN
24 10 23 sylan9eqr NM=NMM+1..^NN=NN
25 2 5 24 3eqtr4a NM=NMN=MM+1..^NN
26 25 ex NM=NMN=MM+1..^NN
27 eluzelz NMN
28 26 27 syl11 M=NNMMN=MM+1..^NN
29 fzisfzounsn NMMN=M..^NN
30 29 adantl ¬M=NNMMN=M..^NN
31 eluz2 NMMNMN
32 simpl1 MNMN¬M=NM
33 simpl2 MNMN¬M=NN
34 nesym NM¬M=N
35 zre MM
36 ltlen MNM<NMNNM
37 35 11 36 syl2an MNM<NMNNM
38 37 biimprd MNMNNMM<N
39 38 exp4b MNMNNMM<N
40 39 3imp MNMNNMM<N
41 34 40 biimtrrid MNMN¬M=NM<N
42 41 imp MNMN¬M=NM<N
43 32 33 42 3jca MNMN¬M=NMNM<N
44 43 ex MNMN¬M=NMNM<N
45 31 44 sylbi NM¬M=NMNM<N
46 45 impcom ¬M=NNMMNM<N
47 fzopred MNM<NM..^N=MM+1..^N
48 46 47 syl ¬M=NNMM..^N=MM+1..^N
49 48 uneq1d ¬M=NNMM..^NN=MM+1..^NN
50 30 49 eqtrd ¬M=NNMMN=MM+1..^NN
51 50 ex ¬M=NNMMN=MM+1..^NN
52 28 51 pm2.61i NMMN=MM+1..^NN