| Step |
Hyp |
Ref |
Expression |
| 1 |
|
unidm |
|
| 2 |
1
|
eqcomi |
|
| 3 |
|
oveq1 |
|
| 4 |
|
fzsn |
|
| 5 |
3 4
|
sylan9eqr |
|
| 6 |
|
sneq |
|
| 7 |
|
oveq1 |
|
| 8 |
7
|
oveq1d |
|
| 9 |
6 8
|
uneq12d |
|
| 10 |
9
|
uneq1d |
|
| 11 |
|
zre |
|
| 12 |
11
|
lep1d |
|
| 13 |
|
peano2z |
|
| 14 |
13
|
zred |
|
| 15 |
11 14
|
lenltd |
|
| 16 |
12 15
|
mpbid |
|
| 17 |
|
fzonlt0 |
|
| 18 |
13 17
|
mpancom |
|
| 19 |
16 18
|
mpbid |
|
| 20 |
19
|
uneq2d |
|
| 21 |
|
un0 |
|
| 22 |
20 21
|
eqtrdi |
|
| 23 |
22
|
uneq1d |
|
| 24 |
10 23
|
sylan9eqr |
|
| 25 |
2 5 24
|
3eqtr4a |
|
| 26 |
25
|
ex |
|
| 27 |
|
eluzelz |
|
| 28 |
26 27
|
syl11 |
|
| 29 |
|
fzisfzounsn |
|
| 30 |
29
|
adantl |
|
| 31 |
|
eluz2 |
|
| 32 |
|
simpl1 |
|
| 33 |
|
simpl2 |
|
| 34 |
|
nesym |
|
| 35 |
|
zre |
|
| 36 |
|
ltlen |
|
| 37 |
35 11 36
|
syl2an |
|
| 38 |
37
|
biimprd |
|
| 39 |
38
|
exp4b |
|
| 40 |
39
|
3imp |
|
| 41 |
34 40
|
biimtrrid |
|
| 42 |
41
|
imp |
|
| 43 |
32 33 42
|
3jca |
|
| 44 |
43
|
ex |
|
| 45 |
31 44
|
sylbi |
|
| 46 |
45
|
impcom |
|
| 47 |
|
fzopred |
|
| 48 |
46 47
|
syl |
|
| 49 |
48
|
uneq1d |
|
| 50 |
30 49
|
eqtrd |
|
| 51 |
50
|
ex |
|
| 52 |
28 51
|
pm2.61i |
|