Description: It is sufficient to require that all alephs are GCH-sets to ensure the full generalized continuum hypothesis. (The proof uses the Axiom of Regularity.) (Contributed by Mario Carneiro, 15-May-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | gch2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssv | |
|
2 | sseq2 | |
|
3 | 1 2 | mpbiri | |
4 | cardidm | |
|
5 | iscard3 | |
|
6 | 4 5 | mpbi | |
7 | elun | |
|
8 | 6 7 | mpbi | |
9 | fingch | |
|
10 | nnfi | |
|
11 | 9 10 | sselid | |
12 | 11 | a1i | |
13 | ssel | |
|
14 | 12 13 | jaod | |
15 | 8 14 | mpi | |
16 | vex | |
|
17 | alephon | |
|
18 | simpr | |
|
19 | simpl | |
|
20 | alephfnon | |
|
21 | fnfvelrn | |
|
22 | 20 18 21 | sylancr | |
23 | 19 22 | sseldd | |
24 | onsuc | |
|
25 | 24 | adantl | |
26 | fnfvelrn | |
|
27 | 20 25 26 | sylancr | |
28 | 19 27 | sseldd | |
29 | gchaleph2 | |
|
30 | 18 23 28 29 | syl3anc | |
31 | isnumi | |
|
32 | 17 30 31 | sylancr | |
33 | 32 | ralrimiva | |
34 | dfac12 | |
|
35 | 33 34 | sylibr | |
36 | dfac10 | |
|
37 | 35 36 | sylib | |
38 | 16 37 | eleqtrrid | |
39 | cardid2 | |
|
40 | engch | |
|
41 | 38 39 40 | 3syl | |
42 | 15 41 | mpbid | |
43 | 16 | a1i | |
44 | 42 43 | 2thd | |
45 | 44 | eqrdv | |
46 | 3 45 | impbii | |