Metamath Proof Explorer


Theorem gch2

Description: It is sufficient to require that all alephs are GCH-sets to ensure the full generalized continuum hypothesis. (The proof uses the Axiom of Regularity.) (Contributed by Mario Carneiro, 15-May-2015)

Ref Expression
Assertion gch2 GCH=VranGCH

Proof

Step Hyp Ref Expression
1 ssv ranV
2 sseq2 GCH=VranGCHranV
3 1 2 mpbiri GCH=VranGCH
4 cardidm cardcardx=cardx
5 iscard3 cardcardx=cardxcardxωran
6 4 5 mpbi cardxωran
7 elun cardxωrancardxωcardxran
8 6 7 mpbi cardxωcardxran
9 fingch FinGCH
10 nnfi cardxωcardxFin
11 9 10 sselid cardxωcardxGCH
12 11 a1i ranGCHcardxωcardxGCH
13 ssel ranGCHcardxrancardxGCH
14 12 13 jaod ranGCHcardxωcardxrancardxGCH
15 8 14 mpi ranGCHcardxGCH
16 vex xV
17 alephon sucxOn
18 simpr ranGCHxOnxOn
19 simpl ranGCHxOnranGCH
20 alephfnon FnOn
21 fnfvelrn FnOnxOnxran
22 20 18 21 sylancr ranGCHxOnxran
23 19 22 sseldd ranGCHxOnxGCH
24 onsuc xOnsucxOn
25 24 adantl ranGCHxOnsucxOn
26 fnfvelrn FnOnsucxOnsucxran
27 20 25 26 sylancr ranGCHxOnsucxran
28 19 27 sseldd ranGCHxOnsucxGCH
29 gchaleph2 xOnxGCHsucxGCHsucx𝒫x
30 18 23 28 29 syl3anc ranGCHxOnsucx𝒫x
31 isnumi sucxOnsucx𝒫x𝒫xdomcard
32 17 30 31 sylancr ranGCHxOn𝒫xdomcard
33 32 ralrimiva ranGCHxOn𝒫xdomcard
34 dfac12 CHOICExOn𝒫xdomcard
35 33 34 sylibr ranGCHCHOICE
36 dfac10 CHOICEdomcard=V
37 35 36 sylib ranGCHdomcard=V
38 16 37 eleqtrrid ranGCHxdomcard
39 cardid2 xdomcardcardxx
40 engch cardxxcardxGCHxGCH
41 38 39 40 3syl ranGCHcardxGCHxGCH
42 15 41 mpbid ranGCHxGCH
43 16 a1i ranGCHxV
44 42 43 2thd ranGCHxGCHxV
45 44 eqrdv ranGCHGCH=V
46 3 45 impbii GCH=VranGCH