Metamath Proof Explorer


Theorem geo2lim

Description: The value of the infinite geometric series 2 ^ -u 1 + 2 ^ -u 2 + ... , multiplied by a constant. (Contributed by Mario Carneiro, 15-Jun-2014)

Ref Expression
Hypothesis geo2lim.1 F=kA2k
Assertion geo2lim Aseq1+FA

Proof

Step Hyp Ref Expression
1 geo2lim.1 F=kA2k
2 nnuz =1
3 1zzd A1
4 halfcn 12
5 4 a1i A12
6 halfre 12
7 halfge0 012
8 absid 1201212=12
9 6 7 8 mp2an 12=12
10 halflt1 12<1
11 9 10 eqbrtri 12<1
12 11 a1i A12<1
13 5 12 expcnv Ak012k0
14 id AA
15 nnex V
16 15 mptex kA2kV
17 1 16 eqeltri FV
18 17 a1i AFV
19 nnnn0 jj0
20 19 adantl Ajj0
21 oveq2 k=j12k=12j
22 eqid k012k=k012k
23 ovex 12jV
24 21 22 23 fvmpt j0k012kj=12j
25 20 24 syl Ajk012kj=12j
26 2cn 2
27 2ne0 20
28 nnz jj
29 28 adantl Ajj
30 exprec 220j12j=12j
31 26 27 29 30 mp3an12i Aj12j=12j
32 25 31 eqtrd Ajk012kj=12j
33 2nn 2
34 nnexpcl 2j02j
35 33 20 34 sylancr Aj2j
36 35 nnrecred Aj12j
37 36 recnd Aj12j
38 32 37 eqeltrd Ajk012kj
39 simpl AjA
40 35 nncnd Aj2j
41 35 nnne0d Aj2j0
42 39 40 41 divrecd AjA2j=A12j
43 oveq2 k=j2k=2j
44 43 oveq2d k=jA2k=A2j
45 ovex A2jV
46 44 1 45 fvmpt jFj=A2j
47 46 adantl AjFj=A2j
48 32 oveq2d AjAk012kj=A12j
49 42 47 48 3eqtr4d AjFj=Ak012kj
50 2 3 13 14 18 38 49 climmulc2 AFA0
51 mul01 AA0=0
52 50 51 breqtrd AF0
53 seqex seq1+FV
54 53 a1i Aseq1+FV
55 39 40 41 divcld AjA2j
56 47 55 eqeltrd AjFj
57 47 oveq2d AjAFj=AA2j
58 geo2sum jAn=1jA2n=AA2j
59 58 ancoms Ajn=1jA2n=AA2j
60 elfznn n1jn
61 60 adantl Ajn1jn
62 oveq2 k=n2k=2n
63 62 oveq2d k=nA2k=A2n
64 ovex A2nV
65 63 1 64 fvmpt nFn=A2n
66 61 65 syl Ajn1jFn=A2n
67 simpr Ajj
68 67 2 eleqtrdi Ajj1
69 simpll Ajn1jA
70 nnnn0 nn0
71 nnexpcl 2n02n
72 33 70 71 sylancr n2n
73 61 72 syl Ajn1j2n
74 73 nncnd Ajn1j2n
75 73 nnne0d Ajn1j2n0
76 69 74 75 divcld Ajn1jA2n
77 66 68 76 fsumser Ajn=1jA2n=seq1+Fj
78 57 59 77 3eqtr2rd Ajseq1+Fj=AFj
79 2 3 52 14 54 56 78 climsubc2 Aseq1+FA0
80 subid1 AA0=A
81 79 80 breqtrd Aseq1+FA