Metamath Proof Explorer


Theorem gexlem2

Description: Any positive annihilator of all the group elements is an upper bound on the group exponent. (Contributed by Mario Carneiro, 24-Apr-2016) (Proof shortened by AV, 26-Sep-2020)

Ref Expression
Hypotheses gexcl.1 X=BaseG
gexcl.2 E=gExG
gexid.3 ·˙=G
gexid.4 0˙=0G
Assertion gexlem2 GVNxXN·˙x=0˙E1N

Proof

Step Hyp Ref Expression
1 gexcl.1 X=BaseG
2 gexcl.2 E=gExG
3 gexid.3 ·˙=G
4 gexid.4 0˙=0G
5 oveq1 y=Ny·˙x=N·˙x
6 5 eqeq1d y=Ny·˙x=0˙N·˙x=0˙
7 6 ralbidv y=NxXy·˙x=0˙xXN·˙x=0˙
8 7 elrab Ny|xXy·˙x=0˙NxXN·˙x=0˙
9 eqid y|xXy·˙x=0˙=y|xXy·˙x=0˙
10 1 3 4 2 9 gexval GVE=ify|xXy·˙x=0˙=0supy|xXy·˙x=0˙<
11 ne0i Ny|xXy·˙x=0˙y|xXy·˙x=0˙
12 ifnefalse y|xXy·˙x=0˙ify|xXy·˙x=0˙=0supy|xXy·˙x=0˙<=supy|xXy·˙x=0˙<
13 11 12 syl Ny|xXy·˙x=0˙ify|xXy·˙x=0˙=0supy|xXy·˙x=0˙<=supy|xXy·˙x=0˙<
14 10 13 sylan9eq GVNy|xXy·˙x=0˙E=supy|xXy·˙x=0˙<
15 ssrab2 y|xXy·˙x=0˙
16 nnuz =1
17 15 16 sseqtri y|xXy·˙x=0˙1
18 11 adantl GVNy|xXy·˙x=0˙y|xXy·˙x=0˙
19 infssuzcl y|xXy·˙x=0˙1y|xXy·˙x=0˙supy|xXy·˙x=0˙<y|xXy·˙x=0˙
20 17 18 19 sylancr GVNy|xXy·˙x=0˙supy|xXy·˙x=0˙<y|xXy·˙x=0˙
21 15 20 sselid GVNy|xXy·˙x=0˙supy|xXy·˙x=0˙<
22 infssuzle y|xXy·˙x=0˙1Ny|xXy·˙x=0˙supy|xXy·˙x=0˙<N
23 17 22 mpan Ny|xXy·˙x=0˙supy|xXy·˙x=0˙<N
24 23 adantl GVNy|xXy·˙x=0˙supy|xXy·˙x=0˙<N
25 elrabi Ny|xXy·˙x=0˙N
26 25 nnzd Ny|xXy·˙x=0˙N
27 fznn Nsupy|xXy·˙x=0˙<1Nsupy|xXy·˙x=0˙<supy|xXy·˙x=0˙<N
28 26 27 syl Ny|xXy·˙x=0˙supy|xXy·˙x=0˙<1Nsupy|xXy·˙x=0˙<supy|xXy·˙x=0˙<N
29 28 adantl GVNy|xXy·˙x=0˙supy|xXy·˙x=0˙<1Nsupy|xXy·˙x=0˙<supy|xXy·˙x=0˙<N
30 21 24 29 mpbir2and GVNy|xXy·˙x=0˙supy|xXy·˙x=0˙<1N
31 14 30 eqeltrd GVNy|xXy·˙x=0˙E1N
32 8 31 sylan2br GVNxXN·˙x=0˙E1N
33 32 3impb GVNxXN·˙x=0˙E1N