Description: Any positive annihilator of all the group elements is an upper bound on the group exponent. (Contributed by Mario Carneiro, 24-Apr-2016) (Proof shortened by AV, 26-Sep-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | gexcl.1 | |
|
gexcl.2 | |
||
gexid.3 | |
||
gexid.4 | |
||
Assertion | gexlem2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gexcl.1 | |
|
2 | gexcl.2 | |
|
3 | gexid.3 | |
|
4 | gexid.4 | |
|
5 | oveq1 | |
|
6 | 5 | eqeq1d | |
7 | 6 | ralbidv | |
8 | 7 | elrab | |
9 | eqid | |
|
10 | 1 3 4 2 9 | gexval | |
11 | ne0i | |
|
12 | ifnefalse | |
|
13 | 11 12 | syl | |
14 | 10 13 | sylan9eq | |
15 | ssrab2 | |
|
16 | nnuz | |
|
17 | 15 16 | sseqtri | |
18 | 11 | adantl | |
19 | infssuzcl | |
|
20 | 17 18 19 | sylancr | |
21 | 15 20 | sselid | |
22 | infssuzle | |
|
23 | 17 22 | mpan | |
24 | 23 | adantl | |
25 | elrabi | |
|
26 | 25 | nnzd | |
27 | fznn | |
|
28 | 26 27 | syl | |
29 | 28 | adantl | |
30 | 21 24 29 | mpbir2and | |
31 | 14 30 | eqeltrd | |
32 | 8 31 | sylan2br | |
33 | 32 | 3impb | |