Metamath Proof Explorer


Theorem gg-cnrehmeo

Description: The canonical bijection from ( RR X. RR ) to CC described in cnref1o is in fact a homeomorphism of the usual topologies on these sets. (It is also an isometry, if ( RR X. RR ) is metrized with the l2 norm.) (Contributed by Mario Carneiro, 25-Aug-2014) Avoid ax-mulf . (Revised by GG, 16-Mar-2025)

Ref Expression
Hypotheses gg-cnrehmeo.1 F=x,yx+iy
gg-cnrehmeo.2 J=topGenran.
gg-cnrehmeo.3 K=TopOpenfld
Assertion gg-cnrehmeo FJ×tJHomeoK

Proof

Step Hyp Ref Expression
1 gg-cnrehmeo.1 F=x,yx+iy
2 gg-cnrehmeo.2 J=topGenran.
3 gg-cnrehmeo.3 K=TopOpenfld
4 retopon topGenran.TopOn
5 2 4 eqeltri JTopOn
6 5 a1i JTopOn
7 3 cnfldtop KTop
8 cnrest2r KTopJ×tJCnK𝑡J×tJCnK
9 7 8 mp1i J×tJCnK𝑡J×tJCnK
10 6 6 cnmpt1st x,yxJ×tJCnJ
11 3 tgioo2 topGenran.=K𝑡
12 2 11 eqtri J=K𝑡
13 12 oveq2i J×tJCnJ=J×tJCnK𝑡
14 10 13 eleqtrdi x,yxJ×tJCnK𝑡
15 9 14 sseldd x,yxJ×tJCnK
16 3 cnfldtopon KTopOn
17 16 a1i KTopOn
18 ax-icn i
19 18 a1i i
20 6 6 17 19 cnmpt2c x,yiJ×tJCnK
21 6 6 cnmpt2nd x,yyJ×tJCnJ
22 21 13 eleqtrdi x,yyJ×tJCnK𝑡
23 9 22 sseldd x,yyJ×tJCnK
24 3 mpomulcn u,vuvK×tKCnK
25 24 a1i u,vuvK×tKCnK
26 oveq12 u=iv=yuv=iy
27 6 6 20 23 17 17 25 26 cnmpt22 x,yiyJ×tJCnK
28 3 addcn +K×tKCnK
29 28 a1i +K×tKCnK
30 6 6 15 27 29 cnmpt22f x,yx+iyJ×tJCnK
31 1 30 eqeltrid FJ×tJCnK
32 1 cnrecnv F-1=zzz
33 ref :
34 33 a1i :
35 34 feqmptd =zz
36 recncf :cn
37 ssid
38 ax-resscn
39 16 toponrestid K=K𝑡
40 3 39 12 cncfcn cn=KCnJ
41 37 38 40 mp2an cn=KCnJ
42 36 41 eleqtri KCnJ
43 35 42 eqeltrrdi zzKCnJ
44 imf :
45 44 a1i :
46 45 feqmptd =zz
47 imcncf :cn
48 47 41 eleqtri KCnJ
49 46 48 eqeltrrdi zzKCnJ
50 17 43 49 cnmpt1t zzzKCnJ×tJ
51 32 50 eqeltrid F-1KCnJ×tJ
52 ishmeo FJ×tJHomeoKFJ×tJCnKF-1KCnJ×tJ
53 31 51 52 sylanbrc FJ×tJHomeoK
54 53 mptru FJ×tJHomeoK