Description: The canonical bijection from ( RR X. RR ) to CC described in cnref1o is in fact a homeomorphism of the usual topologies on these sets. (It is also an isometry, if ( RR X. RR ) is metrized with the l2 norm.) (Contributed by Mario Carneiro, 25-Aug-2014) Avoid ax-mulf . (Revised by GG, 16-Mar-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | gg-cnrehmeo.1 | |
|
gg-cnrehmeo.2 | |
||
gg-cnrehmeo.3 | |
||
Assertion | gg-cnrehmeo | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gg-cnrehmeo.1 | |
|
2 | gg-cnrehmeo.2 | |
|
3 | gg-cnrehmeo.3 | |
|
4 | retopon | |
|
5 | 2 4 | eqeltri | |
6 | 5 | a1i | |
7 | 3 | cnfldtop | |
8 | cnrest2r | |
|
9 | 7 8 | mp1i | |
10 | 6 6 | cnmpt1st | |
11 | 3 | tgioo2 | |
12 | 2 11 | eqtri | |
13 | 12 | oveq2i | |
14 | 10 13 | eleqtrdi | |
15 | 9 14 | sseldd | |
16 | 3 | cnfldtopon | |
17 | 16 | a1i | |
18 | ax-icn | |
|
19 | 18 | a1i | |
20 | 6 6 17 19 | cnmpt2c | |
21 | 6 6 | cnmpt2nd | |
22 | 21 13 | eleqtrdi | |
23 | 9 22 | sseldd | |
24 | 3 | mpomulcn | |
25 | 24 | a1i | |
26 | oveq12 | |
|
27 | 6 6 20 23 17 17 25 26 | cnmpt22 | |
28 | 3 | addcn | |
29 | 28 | a1i | |
30 | 6 6 15 27 29 | cnmpt22f | |
31 | 1 30 | eqeltrid | |
32 | 1 | cnrecnv | |
33 | ref | |
|
34 | 33 | a1i | |
35 | 34 | feqmptd | |
36 | recncf | |
|
37 | ssid | |
|
38 | ax-resscn | |
|
39 | 16 | toponrestid | |
40 | 3 39 12 | cncfcn | |
41 | 37 38 40 | mp2an | |
42 | 36 41 | eleqtri | |
43 | 35 42 | eqeltrrdi | |
44 | imf | |
|
45 | 44 | a1i | |
46 | 45 | feqmptd | |
47 | imcncf | |
|
48 | 47 41 | eleqtri | |
49 | 46 48 | eqeltrrdi | |
50 | 17 43 49 | cnmpt1t | |
51 | 32 50 | eqeltrid | |
52 | ishmeo | |
|
53 | 31 51 52 | sylanbrc | |
54 | 53 | mptru | |