Metamath Proof Explorer


Theorem gg-cxpcn

Description: Domain of continuity of the complex power function. (Contributed by Mario Carneiro, 1-May-2016) Use mpomulcn instead of mulcn as direct dependency. (Revised by GG, 16-Mar-2025)

Ref Expression
Hypotheses gg-cxpcn.d D=−∞0
gg-cxpcn.j J=TopOpenfld
gg-cxpcn.k K=J𝑡D
Assertion gg-cxpcn xD,yxyK×tJCnJ

Proof

Step Hyp Ref Expression
1 gg-cxpcn.d D=−∞0
2 gg-cxpcn.j J=TopOpenfld
3 gg-cxpcn.k K=J𝑡D
4 1 ellogdm xDxxx+
5 4 simplbi xDx
6 5 adantr xDyx
7 1 logdmn0 xDx0
8 7 adantr xDyx0
9 simpr xDyy
10 6 8 9 cxpefd xDyxy=eylogx
11 10 mpoeq3ia xD,yxy=xD,yeylogx
12 2 cnfldtopon JTopOn
13 12 a1i JTopOn
14 5 ssriv D
15 resttopon JTopOnDJ𝑡DTopOnD
16 13 14 15 sylancl J𝑡DTopOnD
17 3 16 eqeltrid KTopOnD
18 17 13 cnmpt2nd xD,yyK×tJCnJ
19 fvres xDlogDx=logx
20 19 adantr xDylogDx=logx
21 20 mpoeq3ia xD,ylogDx=xD,ylogx
22 17 13 cnmpt1st xD,yxK×tJCnK
23 1 logcn logD:Dcn
24 ssid
25 12 toponrestid J=J𝑡
26 2 3 25 cncfcn DDcn=KCnJ
27 14 24 26 mp2an Dcn=KCnJ
28 23 27 eleqtri logDKCnJ
29 28 a1i logDKCnJ
30 17 13 22 29 cnmpt21f xD,ylogDxK×tJCnJ
31 21 30 eqeltrrid xD,ylogxK×tJCnJ
32 2 mpomulcn u,vuvJ×tJCnJ
33 32 a1i u,vuvJ×tJCnJ
34 oveq12 u=yv=logxuv=ylogx
35 17 13 18 31 13 13 33 34 cnmpt22 xD,yylogxK×tJCnJ
36 efcn exp:cn
37 2 cncfcn1 cn=JCnJ
38 36 37 eleqtri expJCnJ
39 38 a1i expJCnJ
40 17 13 35 39 cnmpt21f xD,yeylogxK×tJCnJ
41 40 mptru xD,yeylogxK×tJCnJ
42 11 41 eqeltri xD,yxyK×tJCnJ