Metamath Proof Explorer


Theorem ghmgrp

Description: The image of a group G under a group homomorphism F is a group. This is a stronger result than that usually found in the literature, since the target of the homomorphism (operator O in our model) need not have any of the properties of a group as a prerequisite. (Contributed by Paul Chapman, 25-Apr-2008) (Revised by Mario Carneiro, 12-May-2014) (Revised by Thierry Arnoux, 25-Jan-2020)

Ref Expression
Hypotheses ghmgrp.f φ x X y X F x + ˙ y = F x ˙ F y
ghmgrp.x X = Base G
ghmgrp.y Y = Base H
ghmgrp.p + ˙ = + G
ghmgrp.q ˙ = + H
ghmgrp.1 φ F : X onto Y
ghmgrp.3 φ G Grp
Assertion ghmgrp φ H Grp

Proof

Step Hyp Ref Expression
1 ghmgrp.f φ x X y X F x + ˙ y = F x ˙ F y
2 ghmgrp.x X = Base G
3 ghmgrp.y Y = Base H
4 ghmgrp.p + ˙ = + G
5 ghmgrp.q ˙ = + H
6 ghmgrp.1 φ F : X onto Y
7 ghmgrp.3 φ G Grp
8 grpmnd G Grp G Mnd
9 7 8 syl φ G Mnd
10 1 2 3 4 5 6 9 mhmmnd φ H Mnd
11 fof F : X onto Y F : X Y
12 6 11 syl φ F : X Y
13 12 ad3antrrr φ a Y i X F i = a F : X Y
14 7 ad3antrrr φ a Y i X F i = a G Grp
15 simplr φ a Y i X F i = a i X
16 eqid inv g G = inv g G
17 2 16 grpinvcl G Grp i X inv g G i X
18 14 15 17 syl2anc φ a Y i X F i = a inv g G i X
19 13 18 ffvelrnd φ a Y i X F i = a F inv g G i Y
20 1 3adant1r φ i X x X y X F x + ˙ y = F x ˙ F y
21 7 17 sylan φ i X inv g G i X
22 simpr φ i X i X
23 20 21 22 mhmlem φ i X F inv g G i + ˙ i = F inv g G i ˙ F i
24 23 ad4ant13 φ a Y i X F i = a F inv g G i + ˙ i = F inv g G i ˙ F i
25 eqid 0 G = 0 G
26 2 4 25 16 grplinv G Grp i X inv g G i + ˙ i = 0 G
27 26 fveq2d G Grp i X F inv g G i + ˙ i = F 0 G
28 14 15 27 syl2anc φ a Y i X F i = a F inv g G i + ˙ i = F 0 G
29 1 2 3 4 5 6 9 25 mhmid φ F 0 G = 0 H
30 29 ad3antrrr φ a Y i X F i = a F 0 G = 0 H
31 28 30 eqtrd φ a Y i X F i = a F inv g G i + ˙ i = 0 H
32 simpr φ a Y i X F i = a F i = a
33 32 oveq2d φ a Y i X F i = a F inv g G i ˙ F i = F inv g G i ˙ a
34 24 31 33 3eqtr3rd φ a Y i X F i = a F inv g G i ˙ a = 0 H
35 oveq1 f = F inv g G i f ˙ a = F inv g G i ˙ a
36 35 eqeq1d f = F inv g G i f ˙ a = 0 H F inv g G i ˙ a = 0 H
37 36 rspcev F inv g G i Y F inv g G i ˙ a = 0 H f Y f ˙ a = 0 H
38 19 34 37 syl2anc φ a Y i X F i = a f Y f ˙ a = 0 H
39 foelrni F : X onto Y a Y i X F i = a
40 6 39 sylan φ a Y i X F i = a
41 38 40 r19.29a φ a Y f Y f ˙ a = 0 H
42 41 ralrimiva φ a Y f Y f ˙ a = 0 H
43 eqid 0 H = 0 H
44 3 5 43 isgrp H Grp H Mnd a Y f Y f ˙ a = 0 H
45 10 42 44 sylanbrc φ H Grp