Metamath Proof Explorer


Theorem goalr

Description: If the "Godel-set of universal quantification" applied to a class is a Godel formula, the class is also a Godel formula. Remark: The reverse is not valid for A being of the same height as the "Godel-set of universal quantification". (Contributed by AV, 22-Oct-2023)

Ref Expression
Assertion goalr Nω𝑔iaFmlaNaFmlaN

Proof

Step Hyp Ref Expression
1 goaln0 𝑔iaFmlaNN
2 1 adantl Nω𝑔iaFmlaNN
3 nnsuc NωNnωN=sucn
4 suceq x=sucx=suc
5 4 fveq2d x=Fmlasucx=Fmlasuc
6 5 eleq2d x=𝑔iaFmlasucx𝑔iaFmlasuc
7 5 eleq2d x=aFmlasucxaFmlasuc
8 6 7 imbi12d x=𝑔iaFmlasucxaFmlasucx𝑔iaFmlasucaFmlasuc
9 suceq x=ysucx=sucy
10 9 fveq2d x=yFmlasucx=Fmlasucy
11 10 eleq2d x=y𝑔iaFmlasucx𝑔iaFmlasucy
12 10 eleq2d x=yaFmlasucxaFmlasucy
13 11 12 imbi12d x=y𝑔iaFmlasucxaFmlasucx𝑔iaFmlasucyaFmlasucy
14 suceq x=sucysucx=sucsucy
15 14 fveq2d x=sucyFmlasucx=Fmlasucsucy
16 15 eleq2d x=sucy𝑔iaFmlasucx𝑔iaFmlasucsucy
17 15 eleq2d x=sucyaFmlasucxaFmlasucsucy
18 16 17 imbi12d x=sucy𝑔iaFmlasucxaFmlasucx𝑔iaFmlasucsucyaFmlasucsucy
19 suceq x=nsucx=sucn
20 19 fveq2d x=nFmlasucx=Fmlasucn
21 20 eleq2d x=n𝑔iaFmlasucx𝑔iaFmlasucn
22 20 eleq2d x=naFmlasucxaFmlasucn
23 21 22 imbi12d x=n𝑔iaFmlasucxaFmlasucx𝑔iaFmlasucnaFmlasucn
24 peano1 ω
25 df-goal 𝑔ia=2𝑜ia
26 opex 2𝑜iaV
27 25 26 eqeltri 𝑔iaV
28 isfmlasuc ω𝑔iaV𝑔iaFmlasuc𝑔iaFmlauFmlavFmla𝑔ia=u𝑔vkω𝑔ia=𝑔ku
29 24 27 28 mp2an 𝑔iaFmlasuc𝑔iaFmlauFmlavFmla𝑔ia=u𝑔vkω𝑔ia=𝑔ku
30 eqeq1 x=𝑔iax=k𝑔j𝑔ia=k𝑔j
31 30 2rexbidv x=𝑔iakωjωx=k𝑔jkωjω𝑔ia=k𝑔j
32 fmla0 Fmla=xV|kωjωx=k𝑔j
33 31 32 elrab2 𝑔iaFmla𝑔iaVkωjω𝑔ia=k𝑔j
34 25 a1i kωjω𝑔ia=2𝑜ia
35 goel kωjωk𝑔j=kj
36 34 35 eqeq12d kωjω𝑔ia=k𝑔j2𝑜ia=kj
37 2oex 2𝑜V
38 opex iaV
39 37 38 opth 2𝑜ia=kj2𝑜=ia=kj
40 2on0 2𝑜
41 eqneqall 2𝑜=2𝑜aFmlasuc
42 40 41 mpi 2𝑜=aFmlasuc
43 42 adantr 2𝑜=ia=kjaFmlasuc
44 39 43 sylbi 2𝑜ia=kjaFmlasuc
45 36 44 syl6bi kωjω𝑔ia=k𝑔jaFmlasuc
46 45 rexlimdva kωjω𝑔ia=k𝑔jaFmlasuc
47 46 rexlimiv kωjω𝑔ia=k𝑔jaFmlasuc
48 33 47 simplbiim 𝑔iaFmlaaFmlasuc
49 gonanegoal u𝑔v𝑔ia
50 eqneqall u𝑔v=𝑔iau𝑔v𝑔iaaFmlasuc
51 49 50 mpi u𝑔v=𝑔iaaFmlasuc
52 51 eqcoms 𝑔ia=u𝑔vaFmlasuc
53 52 a1i uFmlavFmla𝑔ia=u𝑔vaFmlasuc
54 53 rexlimdva uFmlavFmla𝑔ia=u𝑔vaFmlasuc
55 df-goal 𝑔ku=2𝑜ku
56 25 55 eqeq12i 𝑔ia=𝑔ku2𝑜ia=2𝑜ku
57 37 38 opth 2𝑜ia=2𝑜ku2𝑜=2𝑜ia=ku
58 vex iV
59 vex aV
60 58 59 opth ia=kui=ka=u
61 eleq1w u=auFmlaaFmla
62 fmlasssuc ωFmlaFmlasuc
63 24 62 ax-mp FmlaFmlasuc
64 63 sseli aFmlaaFmlasuc
65 61 64 syl6bi u=auFmlaaFmlasuc
66 65 eqcoms a=uuFmlaaFmlasuc
67 60 66 simplbiim ia=kuuFmlaaFmlasuc
68 57 67 simplbiim 2𝑜ia=2𝑜kuuFmlaaFmlasuc
69 68 com12 uFmla2𝑜ia=2𝑜kuaFmlasuc
70 69 adantr uFmlakω2𝑜ia=2𝑜kuaFmlasuc
71 56 70 biimtrid uFmlakω𝑔ia=𝑔kuaFmlasuc
72 71 rexlimdva uFmlakω𝑔ia=𝑔kuaFmlasuc
73 54 72 jaod uFmlavFmla𝑔ia=u𝑔vkω𝑔ia=𝑔kuaFmlasuc
74 73 rexlimiv uFmlavFmla𝑔ia=u𝑔vkω𝑔ia=𝑔kuaFmlasuc
75 48 74 jaoi 𝑔iaFmlauFmlavFmla𝑔ia=u𝑔vkω𝑔ia=𝑔kuaFmlasuc
76 29 75 sylbi 𝑔iaFmlasucaFmlasuc
77 goalrlem yω𝑔iaFmlasucyaFmlasucy𝑔iaFmlasucsucyaFmlasucsucy
78 8 13 18 23 76 77 finds nω𝑔iaFmlasucnaFmlasucn
79 78 adantr nωN=sucn𝑔iaFmlasucnaFmlasucn
80 fveq2 N=sucnFmlaN=Fmlasucn
81 80 eleq2d N=sucn𝑔iaFmlaN𝑔iaFmlasucn
82 80 eleq2d N=sucnaFmlaNaFmlasucn
83 81 82 imbi12d N=sucn𝑔iaFmlaNaFmlaN𝑔iaFmlasucnaFmlasucn
84 83 adantl nωN=sucn𝑔iaFmlaNaFmlaN𝑔iaFmlasucnaFmlasucn
85 79 84 mpbird nωN=sucn𝑔iaFmlaNaFmlaN
86 85 rexlimiva nωN=sucn𝑔iaFmlaNaFmlaN
87 3 86 syl NωN𝑔iaFmlaNaFmlaN
88 87 impancom Nω𝑔iaFmlaNNaFmlaN
89 2 88 mpd Nω𝑔iaFmlaNaFmlaN