Metamath Proof Explorer


Theorem gpg5edgnedg

Description: Two consecutive (according to the numbering) inside vertices of the Petersen graph G(5,2) are not connected by an edge, but are connected by an edge in a 5-prism G(5,1). (Contributed by AV, 29-Dec-2025)

Ref Expression
Assertion gpg5edgnedg Could not format assertion : No typesetting found for |- ( { <. 1 , 0 >. , <. 1 , 1 >. } e. ( Edg ` ( 5 gPetersenGr 1 ) ) /\ { <. 1 , 0 >. , <. 1 , 1 >. } e/ ( Edg ` ( 5 gPetersenGr 2 ) ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 c0ex 0 V
2 eleq1 x = 0 x 0 ..^ 5 0 0 ..^ 5
3 opeq2 x = 0 0 x = 0 0
4 oveq1 x = 0 x + 1 = 0 + 1
5 4 oveq1d x = 0 x + 1 mod 5 = 0 + 1 mod 5
6 5 opeq2d x = 0 0 x + 1 mod 5 = 0 0 + 1 mod 5
7 3 6 preq12d x = 0 0 x 0 x + 1 mod 5 = 0 0 0 0 + 1 mod 5
8 7 eqeq2d x = 0 1 0 1 1 = 0 x 0 x + 1 mod 5 1 0 1 1 = 0 0 0 0 + 1 mod 5
9 opeq2 x = 0 1 x = 1 0
10 3 9 preq12d x = 0 0 x 1 x = 0 0 1 0
11 10 eqeq2d x = 0 1 0 1 1 = 0 x 1 x 1 0 1 1 = 0 0 1 0
12 5 opeq2d x = 0 1 x + 1 mod 5 = 1 0 + 1 mod 5
13 9 12 preq12d x = 0 1 x 1 x + 1 mod 5 = 1 0 1 0 + 1 mod 5
14 13 eqeq2d x = 0 1 0 1 1 = 1 x 1 x + 1 mod 5 1 0 1 1 = 1 0 1 0 + 1 mod 5
15 8 11 14 3orbi123d x = 0 1 0 1 1 = 0 x 0 x + 1 mod 5 1 0 1 1 = 0 x 1 x 1 0 1 1 = 1 x 1 x + 1 mod 5 1 0 1 1 = 0 0 0 0 + 1 mod 5 1 0 1 1 = 0 0 1 0 1 0 1 1 = 1 0 1 0 + 1 mod 5
16 2 15 anbi12d x = 0 x 0 ..^ 5 1 0 1 1 = 0 x 0 x + 1 mod 5 1 0 1 1 = 0 x 1 x 1 0 1 1 = 1 x 1 x + 1 mod 5 0 0 ..^ 5 1 0 1 1 = 0 0 0 0 + 1 mod 5 1 0 1 1 = 0 0 1 0 1 0 1 1 = 1 0 1 0 + 1 mod 5
17 5nn 5
18 lbfzo0 0 0 ..^ 5 5
19 17 18 mpbir 0 0 ..^ 5
20 0p1e1 0 + 1 = 1
21 20 oveq1i 0 + 1 mod 5 = 1 mod 5
22 5re 5
23 1lt5 1 < 5
24 1mod 5 1 < 5 1 mod 5 = 1
25 22 23 24 mp2an 1 mod 5 = 1
26 21 25 eqtr2i 1 = 0 + 1 mod 5
27 26 opeq2i 1 1 = 1 0 + 1 mod 5
28 27 preq2i 1 0 1 1 = 1 0 1 0 + 1 mod 5
29 28 3mix3i 1 0 1 1 = 0 0 0 0 + 1 mod 5 1 0 1 1 = 0 0 1 0 1 0 1 1 = 1 0 1 0 + 1 mod 5
30 19 29 pm3.2i 0 0 ..^ 5 1 0 1 1 = 0 0 0 0 + 1 mod 5 1 0 1 1 = 0 0 1 0 1 0 1 1 = 1 0 1 0 + 1 mod 5
31 1 16 30 ceqsexv2d x x 0 ..^ 5 1 0 1 1 = 0 x 0 x + 1 mod 5 1 0 1 1 = 0 x 1 x 1 0 1 1 = 1 x 1 x + 1 mod 5
32 df-rex x 0 ..^ 5 1 0 1 1 = 0 x 0 x + 1 mod 5 1 0 1 1 = 0 x 1 x 1 0 1 1 = 1 x 1 x + 1 mod 5 x x 0 ..^ 5 1 0 1 1 = 0 x 0 x + 1 mod 5 1 0 1 1 = 0 x 1 x 1 0 1 1 = 1 x 1 x + 1 mod 5
33 31 32 mpbir x 0 ..^ 5 1 0 1 1 = 0 x 0 x + 1 mod 5 1 0 1 1 = 0 x 1 x 1 0 1 1 = 1 x 1 x + 1 mod 5
34 5eluz3 5 3
35 2z 2
36 22 rehalfcli 5 2
37 ceilcl 5 2 5 2
38 36 37 ax-mp 5 2
39 2ltceilhalf 5 3 2 5 2
40 34 39 ax-mp 2 5 2
41 eluz2 5 2 2 2 5 2 2 5 2
42 35 38 40 41 mpbir3an 5 2 2
43 fzo1lb 1 1 ..^ 5 2 5 2 2
44 42 43 mpbir 1 1 ..^ 5 2
45 eqid 0 ..^ 5 = 0 ..^ 5
46 eqid 1 ..^ 5 2 = 1 ..^ 5 2
47 eqid Could not format ( 5 gPetersenGr 1 ) = ( 5 gPetersenGr 1 ) : No typesetting found for |- ( 5 gPetersenGr 1 ) = ( 5 gPetersenGr 1 ) with typecode |-
48 eqid Could not format ( Edg ` ( 5 gPetersenGr 1 ) ) = ( Edg ` ( 5 gPetersenGr 1 ) ) : No typesetting found for |- ( Edg ` ( 5 gPetersenGr 1 ) ) = ( Edg ` ( 5 gPetersenGr 1 ) ) with typecode |-
49 45 46 47 48 gpgedgel Could not format ( ( 5 e. ( ZZ>= ` 3 ) /\ 1 e. ( 1 ..^ ( |^ ` ( 5 / 2 ) ) ) ) -> ( { <. 1 , 0 >. , <. 1 , 1 >. } e. ( Edg ` ( 5 gPetersenGr 1 ) ) <-> E. x e. ( 0 ..^ 5 ) ( { <. 1 , 0 >. , <. 1 , 1 >. } = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod 5 ) >. } \/ { <. 1 , 0 >. , <. 1 , 1 >. } = { <. 0 , x >. , <. 1 , x >. } \/ { <. 1 , 0 >. , <. 1 , 1 >. } = { <. 1 , x >. , <. 1 , ( ( x + 1 ) mod 5 ) >. } ) ) ) : No typesetting found for |- ( ( 5 e. ( ZZ>= ` 3 ) /\ 1 e. ( 1 ..^ ( |^ ` ( 5 / 2 ) ) ) ) -> ( { <. 1 , 0 >. , <. 1 , 1 >. } e. ( Edg ` ( 5 gPetersenGr 1 ) ) <-> E. x e. ( 0 ..^ 5 ) ( { <. 1 , 0 >. , <. 1 , 1 >. } = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod 5 ) >. } \/ { <. 1 , 0 >. , <. 1 , 1 >. } = { <. 0 , x >. , <. 1 , x >. } \/ { <. 1 , 0 >. , <. 1 , 1 >. } = { <. 1 , x >. , <. 1 , ( ( x + 1 ) mod 5 ) >. } ) ) ) with typecode |-
50 34 44 49 mp2an Could not format ( { <. 1 , 0 >. , <. 1 , 1 >. } e. ( Edg ` ( 5 gPetersenGr 1 ) ) <-> E. x e. ( 0 ..^ 5 ) ( { <. 1 , 0 >. , <. 1 , 1 >. } = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod 5 ) >. } \/ { <. 1 , 0 >. , <. 1 , 1 >. } = { <. 0 , x >. , <. 1 , x >. } \/ { <. 1 , 0 >. , <. 1 , 1 >. } = { <. 1 , x >. , <. 1 , ( ( x + 1 ) mod 5 ) >. } ) ) : No typesetting found for |- ( { <. 1 , 0 >. , <. 1 , 1 >. } e. ( Edg ` ( 5 gPetersenGr 1 ) ) <-> E. x e. ( 0 ..^ 5 ) ( { <. 1 , 0 >. , <. 1 , 1 >. } = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod 5 ) >. } \/ { <. 1 , 0 >. , <. 1 , 1 >. } = { <. 0 , x >. , <. 1 , x >. } \/ { <. 1 , 0 >. , <. 1 , 1 >. } = { <. 1 , x >. , <. 1 , ( ( x + 1 ) mod 5 ) >. } ) ) with typecode |-
51 33 50 mpbir Could not format { <. 1 , 0 >. , <. 1 , 1 >. } e. ( Edg ` ( 5 gPetersenGr 1 ) ) : No typesetting found for |- { <. 1 , 0 >. , <. 1 , 1 >. } e. ( Edg ` ( 5 gPetersenGr 1 ) ) with typecode |-
52 pglem 2 1 ..^ 5 2
53 opex 1 0 V
54 opex 1 1 V
55 53 54 pm3.2i 1 0 V 1 1 V
56 opex 0 x V
57 opex 0 x + 1 mod 5 V
58 56 57 pm3.2i 0 x V 0 x + 1 mod 5 V
59 55 58 pm3.2i 1 0 V 1 1 V 0 x V 0 x + 1 mod 5 V
60 ax-1ne0 1 0
61 60 orci 1 0 0 x
62 1ex 1 V
63 62 1 opthne 1 0 0 x 1 0 0 x
64 61 63 mpbir 1 0 0 x
65 60 orci 1 0 0 x + 1 mod 5
66 62 1 opthne 1 0 0 x + 1 mod 5 1 0 0 x + 1 mod 5
67 65 66 mpbir 1 0 0 x + 1 mod 5
68 64 67 pm3.2i 1 0 0 x 1 0 0 x + 1 mod 5
69 68 a1i 5 3 2 1 ..^ 5 2 x 0 ..^ 5 1 0 0 x 1 0 0 x + 1 mod 5
70 69 orcd 5 3 2 1 ..^ 5 2 x 0 ..^ 5 1 0 0 x 1 0 0 x + 1 mod 5 1 1 0 x 1 1 0 x + 1 mod 5
71 prneimg 1 0 V 1 1 V 0 x V 0 x + 1 mod 5 V 1 0 0 x 1 0 0 x + 1 mod 5 1 1 0 x 1 1 0 x + 1 mod 5 1 0 1 1 0 x 0 x + 1 mod 5
72 59 70 71 mpsyl 5 3 2 1 ..^ 5 2 x 0 ..^ 5 1 0 1 1 0 x 0 x + 1 mod 5
73 64 orci 1 0 0 x 1 1 1 x
74 73 a1i 5 3 2 1 ..^ 5 2 x 0 ..^ 5 1 0 0 x 1 1 1 x
75 60 orci 1 0 1 x
76 62 62 opthne 1 1 0 x 1 0 1 x
77 75 76 mpbir 1 1 0 x
78 77 olci 1 0 1 x 1 1 0 x
79 78 a1i 5 3 2 1 ..^ 5 2 x 0 ..^ 5 1 0 1 x 1 1 0 x
80 opex 1 x V
81 56 80 pm3.2i 0 x V 1 x V
82 55 81 pm3.2i 1 0 V 1 1 V 0 x V 1 x V
83 prneimg2 1 0 V 1 1 V 0 x V 1 x V 1 0 1 1 0 x 1 x 1 0 0 x 1 1 1 x 1 0 1 x 1 1 0 x
84 82 83 mp1i 5 3 2 1 ..^ 5 2 x 0 ..^ 5 1 0 1 1 0 x 1 x 1 0 0 x 1 1 1 x 1 0 1 x 1 1 0 x
85 74 79 84 mpbir2and 5 3 2 1 ..^ 5 2 x 0 ..^ 5 1 0 1 1 0 x 1 x
86 1ne2 1 2
87 86 a1i 0 = x 5 3 2 1 ..^ 5 2 x 0 ..^ 5 1 2
88 2cn 2
89 88 addlidi 0 + 2 = 2
90 89 oveq1i 0 + 2 mod 5 = 2 mod 5
91 2nn0 2 0
92 2lt5 2 < 5
93 elfzo0 2 0 ..^ 5 2 0 5 2 < 5
94 91 17 92 93 mpbir3an 2 0 ..^ 5
95 zmodidfzoimp 2 0 ..^ 5 2 mod 5 = 2
96 94 95 ax-mp 2 mod 5 = 2
97 90 96 eqtr2i 2 = 0 + 2 mod 5
98 oveq1 0 = x 0 + 2 = x + 2
99 98 oveq1d 0 = x 0 + 2 mod 5 = x + 2 mod 5
100 97 99 eqtrid 0 = x 2 = x + 2 mod 5
101 100 adantr 0 = x 5 3 2 1 ..^ 5 2 x 0 ..^ 5 2 = x + 2 mod 5
102 87 101 neeqtrd 0 = x 5 3 2 1 ..^ 5 2 x 0 ..^ 5 1 x + 2 mod 5
103 102 olcd 0 = x 5 3 2 1 ..^ 5 2 x 0 ..^ 5 0 x 1 x + 2 mod 5
104 103 ex 0 = x 5 3 2 1 ..^ 5 2 x 0 ..^ 5 0 x 1 x + 2 mod 5
105 orc 0 x 0 x 1 x + 2 mod 5
106 105 a1d 0 x 5 3 2 1 ..^ 5 2 x 0 ..^ 5 0 x 1 x + 2 mod 5
107 104 106 pm2.61ine 5 3 2 1 ..^ 5 2 x 0 ..^ 5 0 x 1 x + 2 mod 5
108 62 1 opthne 1 0 1 x 1 1 0 x
109 neirr ¬ 1 1
110 109 biorfi 0 x 1 1 0 x
111 108 110 bitr4i 1 0 1 x 0 x
112 111 a1i 5 3 2 1 ..^ 5 2 x 0 ..^ 5 1 0 1 x 0 x
113 62 62 opthne 1 1 1 x + 2 mod 5 1 1 1 x + 2 mod 5
114 109 biorfi 1 x + 2 mod 5 1 1 1 x + 2 mod 5
115 113 114 bitr4i 1 1 1 x + 2 mod 5 1 x + 2 mod 5
116 115 a1i 5 3 2 1 ..^ 5 2 x 0 ..^ 5 1 1 1 x + 2 mod 5 1 x + 2 mod 5
117 112 116 orbi12d 5 3 2 1 ..^ 5 2 x 0 ..^ 5 1 0 1 x 1 1 1 x + 2 mod 5 0 x 1 x + 2 mod 5
118 107 117 mpbird 5 3 2 1 ..^ 5 2 x 0 ..^ 5 1 0 1 x 1 1 1 x + 2 mod 5
119 0re 0
120 3pos 0 < 3
121 119 120 ltneii 0 3
122 121 a1i 1 = x 5 3 2 1 ..^ 5 2 x 0 ..^ 5 0 3
123 1p2e3 1 + 2 = 3
124 123 oveq1i 1 + 2 mod 5 = 3 mod 5
125 3nn0 3 0
126 3lt5 3 < 5
127 elfzo0 3 0 ..^ 5 3 0 5 3 < 5
128 125 17 126 127 mpbir3an 3 0 ..^ 5
129 zmodidfzoimp 3 0 ..^ 5 3 mod 5 = 3
130 128 129 ax-mp 3 mod 5 = 3
131 124 130 eqtr2i 3 = 1 + 2 mod 5
132 oveq1 1 = x 1 + 2 = x + 2
133 132 oveq1d 1 = x 1 + 2 mod 5 = x + 2 mod 5
134 131 133 eqtrid 1 = x 3 = x + 2 mod 5
135 134 adantr 1 = x 5 3 2 1 ..^ 5 2 x 0 ..^ 5 3 = x + 2 mod 5
136 122 135 neeqtrd 1 = x 5 3 2 1 ..^ 5 2 x 0 ..^ 5 0 x + 2 mod 5
137 136 orcd 1 = x 5 3 2 1 ..^ 5 2 x 0 ..^ 5 0 x + 2 mod 5 1 x
138 137 ex 1 = x 5 3 2 1 ..^ 5 2 x 0 ..^ 5 0 x + 2 mod 5 1 x
139 olc 1 x 0 x + 2 mod 5 1 x
140 139 a1d 1 x 5 3 2 1 ..^ 5 2 x 0 ..^ 5 0 x + 2 mod 5 1 x
141 138 140 pm2.61ine 5 3 2 1 ..^ 5 2 x 0 ..^ 5 0 x + 2 mod 5 1 x
142 62 1 opthne 1 0 1 x + 2 mod 5 1 1 0 x + 2 mod 5
143 109 biorfi 0 x + 2 mod 5 1 1 0 x + 2 mod 5
144 142 143 bitr4i 1 0 1 x + 2 mod 5 0 x + 2 mod 5
145 144 a1i 5 3 2 1 ..^ 5 2 x 0 ..^ 5 1 0 1 x + 2 mod 5 0 x + 2 mod 5
146 62 62 opthne 1 1 1 x 1 1 1 x
147 109 biorfi 1 x 1 1 1 x
148 146 147 bitr4i 1 1 1 x 1 x
149 148 a1i 5 3 2 1 ..^ 5 2 x 0 ..^ 5 1 1 1 x 1 x
150 145 149 orbi12d 5 3 2 1 ..^ 5 2 x 0 ..^ 5 1 0 1 x + 2 mod 5 1 1 1 x 0 x + 2 mod 5 1 x
151 141 150 mpbird 5 3 2 1 ..^ 5 2 x 0 ..^ 5 1 0 1 x + 2 mod 5 1 1 1 x
152 opex 1 x + 2 mod 5 V
153 80 152 pm3.2i 1 x V 1 x + 2 mod 5 V
154 55 153 pm3.2i 1 0 V 1 1 V 1 x V 1 x + 2 mod 5 V
155 prneimg2 1 0 V 1 1 V 1 x V 1 x + 2 mod 5 V 1 0 1 1 1 x 1 x + 2 mod 5 1 0 1 x 1 1 1 x + 2 mod 5 1 0 1 x + 2 mod 5 1 1 1 x
156 154 155 mp1i 5 3 2 1 ..^ 5 2 x 0 ..^ 5 1 0 1 1 1 x 1 x + 2 mod 5 1 0 1 x 1 1 1 x + 2 mod 5 1 0 1 x + 2 mod 5 1 1 1 x
157 118 151 156 mpbir2and 5 3 2 1 ..^ 5 2 x 0 ..^ 5 1 0 1 1 1 x 1 x + 2 mod 5
158 72 85 157 3jca 5 3 2 1 ..^ 5 2 x 0 ..^ 5 1 0 1 1 0 x 0 x + 1 mod 5 1 0 1 1 0 x 1 x 1 0 1 1 1 x 1 x + 2 mod 5
159 158 ralrimiva 5 3 2 1 ..^ 5 2 x 0 ..^ 5 1 0 1 1 0 x 0 x + 1 mod 5 1 0 1 1 0 x 1 x 1 0 1 1 1 x 1 x + 2 mod 5
160 ralnex x 0 ..^ 5 ¬ 1 0 1 1 = 0 x 0 x + 1 mod 5 1 0 1 1 = 0 x 1 x 1 0 1 1 = 1 x 1 x + 2 mod 5 ¬ x 0 ..^ 5 1 0 1 1 = 0 x 0 x + 1 mod 5 1 0 1 1 = 0 x 1 x 1 0 1 1 = 1 x 1 x + 2 mod 5
161 3ioran ¬ 1 0 1 1 = 0 x 0 x + 1 mod 5 1 0 1 1 = 0 x 1 x 1 0 1 1 = 1 x 1 x + 2 mod 5 ¬ 1 0 1 1 = 0 x 0 x + 1 mod 5 ¬ 1 0 1 1 = 0 x 1 x ¬ 1 0 1 1 = 1 x 1 x + 2 mod 5
162 df-ne 1 0 1 1 0 x 0 x + 1 mod 5 ¬ 1 0 1 1 = 0 x 0 x + 1 mod 5
163 df-ne 1 0 1 1 0 x 1 x ¬ 1 0 1 1 = 0 x 1 x
164 df-ne 1 0 1 1 1 x 1 x + 2 mod 5 ¬ 1 0 1 1 = 1 x 1 x + 2 mod 5
165 162 163 164 3anbi123i 1 0 1 1 0 x 0 x + 1 mod 5 1 0 1 1 0 x 1 x 1 0 1 1 1 x 1 x + 2 mod 5 ¬ 1 0 1 1 = 0 x 0 x + 1 mod 5 ¬ 1 0 1 1 = 0 x 1 x ¬ 1 0 1 1 = 1 x 1 x + 2 mod 5
166 161 165 bitr4i ¬ 1 0 1 1 = 0 x 0 x + 1 mod 5 1 0 1 1 = 0 x 1 x 1 0 1 1 = 1 x 1 x + 2 mod 5 1 0 1 1 0 x 0 x + 1 mod 5 1 0 1 1 0 x 1 x 1 0 1 1 1 x 1 x + 2 mod 5
167 166 ralbii x 0 ..^ 5 ¬ 1 0 1 1 = 0 x 0 x + 1 mod 5 1 0 1 1 = 0 x 1 x 1 0 1 1 = 1 x 1 x + 2 mod 5 x 0 ..^ 5 1 0 1 1 0 x 0 x + 1 mod 5 1 0 1 1 0 x 1 x 1 0 1 1 1 x 1 x + 2 mod 5
168 160 167 bitr3i ¬ x 0 ..^ 5 1 0 1 1 = 0 x 0 x + 1 mod 5 1 0 1 1 = 0 x 1 x 1 0 1 1 = 1 x 1 x + 2 mod 5 x 0 ..^ 5 1 0 1 1 0 x 0 x + 1 mod 5 1 0 1 1 0 x 1 x 1 0 1 1 1 x 1 x + 2 mod 5
169 159 168 sylibr 5 3 2 1 ..^ 5 2 ¬ x 0 ..^ 5 1 0 1 1 = 0 x 0 x + 1 mod 5 1 0 1 1 = 0 x 1 x 1 0 1 1 = 1 x 1 x + 2 mod 5
170 eqid Could not format ( 5 gPetersenGr 2 ) = ( 5 gPetersenGr 2 ) : No typesetting found for |- ( 5 gPetersenGr 2 ) = ( 5 gPetersenGr 2 ) with typecode |-
171 eqid Could not format ( Edg ` ( 5 gPetersenGr 2 ) ) = ( Edg ` ( 5 gPetersenGr 2 ) ) : No typesetting found for |- ( Edg ` ( 5 gPetersenGr 2 ) ) = ( Edg ` ( 5 gPetersenGr 2 ) ) with typecode |-
172 45 46 170 171 gpgedgel Could not format ( ( 5 e. ( ZZ>= ` 3 ) /\ 2 e. ( 1 ..^ ( |^ ` ( 5 / 2 ) ) ) ) -> ( { <. 1 , 0 >. , <. 1 , 1 >. } e. ( Edg ` ( 5 gPetersenGr 2 ) ) <-> E. x e. ( 0 ..^ 5 ) ( { <. 1 , 0 >. , <. 1 , 1 >. } = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod 5 ) >. } \/ { <. 1 , 0 >. , <. 1 , 1 >. } = { <. 0 , x >. , <. 1 , x >. } \/ { <. 1 , 0 >. , <. 1 , 1 >. } = { <. 1 , x >. , <. 1 , ( ( x + 2 ) mod 5 ) >. } ) ) ) : No typesetting found for |- ( ( 5 e. ( ZZ>= ` 3 ) /\ 2 e. ( 1 ..^ ( |^ ` ( 5 / 2 ) ) ) ) -> ( { <. 1 , 0 >. , <. 1 , 1 >. } e. ( Edg ` ( 5 gPetersenGr 2 ) ) <-> E. x e. ( 0 ..^ 5 ) ( { <. 1 , 0 >. , <. 1 , 1 >. } = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod 5 ) >. } \/ { <. 1 , 0 >. , <. 1 , 1 >. } = { <. 0 , x >. , <. 1 , x >. } \/ { <. 1 , 0 >. , <. 1 , 1 >. } = { <. 1 , x >. , <. 1 , ( ( x + 2 ) mod 5 ) >. } ) ) ) with typecode |-
173 169 172 mtbird Could not format ( ( 5 e. ( ZZ>= ` 3 ) /\ 2 e. ( 1 ..^ ( |^ ` ( 5 / 2 ) ) ) ) -> -. { <. 1 , 0 >. , <. 1 , 1 >. } e. ( Edg ` ( 5 gPetersenGr 2 ) ) ) : No typesetting found for |- ( ( 5 e. ( ZZ>= ` 3 ) /\ 2 e. ( 1 ..^ ( |^ ` ( 5 / 2 ) ) ) ) -> -. { <. 1 , 0 >. , <. 1 , 1 >. } e. ( Edg ` ( 5 gPetersenGr 2 ) ) ) with typecode |-
174 34 52 173 mp2an Could not format -. { <. 1 , 0 >. , <. 1 , 1 >. } e. ( Edg ` ( 5 gPetersenGr 2 ) ) : No typesetting found for |- -. { <. 1 , 0 >. , <. 1 , 1 >. } e. ( Edg ` ( 5 gPetersenGr 2 ) ) with typecode |-
175 174 nelir Could not format { <. 1 , 0 >. , <. 1 , 1 >. } e/ ( Edg ` ( 5 gPetersenGr 2 ) ) : No typesetting found for |- { <. 1 , 0 >. , <. 1 , 1 >. } e/ ( Edg ` ( 5 gPetersenGr 2 ) ) with typecode |-
176 51 175 pm3.2i Could not format ( { <. 1 , 0 >. , <. 1 , 1 >. } e. ( Edg ` ( 5 gPetersenGr 1 ) ) /\ { <. 1 , 0 >. , <. 1 , 1 >. } e/ ( Edg ` ( 5 gPetersenGr 2 ) ) ) : No typesetting found for |- ( { <. 1 , 0 >. , <. 1 , 1 >. } e. ( Edg ` ( 5 gPetersenGr 1 ) ) /\ { <. 1 , 0 >. , <. 1 , 1 >. } e/ ( Edg ` ( 5 gPetersenGr 2 ) ) ) with typecode |-