Metamath Proof Explorer


Theorem gpg5nbgrvtx13starlem3

Description: Lemma 3 for gpg5nbgr3star . (Contributed by AV, 8-Sep-2025)

Ref Expression
Hypotheses gpg5nbgrvtx03starlem1.j J = 1 ..^ N 2
gpg5nbgrvtx03starlem1.g No typesetting found for |- G = ( N gPetersenGr K ) with typecode |-
gpg5nbgrvtx03starlem1.v V = Vtx G
gpg5nbgrvtx03starlem1.e E = Edg G
Assertion gpg5nbgrvtx13starlem3 N = 5 K J X W 0 X 1 X K mod N E

Proof

Step Hyp Ref Expression
1 gpg5nbgrvtx03starlem1.j J = 1 ..^ N 2
2 gpg5nbgrvtx03starlem1.g Could not format G = ( N gPetersenGr K ) : No typesetting found for |- G = ( N gPetersenGr K ) with typecode |-
3 gpg5nbgrvtx03starlem1.v V = Vtx G
4 gpg5nbgrvtx03starlem1.e E = Edg G
5 opex 0 X V
6 opex 1 X K mod N V
7 5 6 pm3.2i 0 X V 1 X K mod N V
8 opex 0 x V
9 opex 0 x + 1 mod N V
10 8 9 pm3.2i 0 x V 0 x + 1 mod N V
11 7 10 pm3.2i 0 X V 1 X K mod N V 0 x V 0 x + 1 mod N V
12 ax-1ne0 1 0
13 12 orci 1 0 X K mod N x
14 1ex 1 V
15 ovex X K mod N V
16 14 15 opthne 1 X K mod N 0 x 1 0 X K mod N x
17 13 16 mpbir 1 X K mod N 0 x
18 12 orci 1 0 X K mod N x + 1 mod N
19 14 15 opthne 1 X K mod N 0 x + 1 mod N 1 0 X K mod N x + 1 mod N
20 18 19 mpbir 1 X K mod N 0 x + 1 mod N
21 17 20 pm3.2i 1 X K mod N 0 x 1 X K mod N 0 x + 1 mod N
22 21 a1i N = 5 K J X W x 0 ..^ N 1 X K mod N 0 x 1 X K mod N 0 x + 1 mod N
23 22 olcd N = 5 K J X W x 0 ..^ N 0 X 0 x 0 X 0 x + 1 mod N 1 X K mod N 0 x 1 X K mod N 0 x + 1 mod N
24 prneimg 0 X V 1 X K mod N V 0 x V 0 x + 1 mod N V 0 X 0 x 0 X 0 x + 1 mod N 1 X K mod N 0 x 1 X K mod N 0 x + 1 mod N 0 X 1 X K mod N 0 x 0 x + 1 mod N
25 11 23 24 mpsyl N = 5 K J X W x 0 ..^ N 0 X 1 X K mod N 0 x 0 x + 1 mod N
26 eleq1 X = x X 0 ..^ N x 0 ..^ N
27 26 adantr X = x N = 5 K J X W X 0 ..^ N x 0 ..^ N
28 simpll N = 5 K J X W N = 5
29 28 oveq2d N = 5 K J X W 0 ..^ N = 0 ..^ 5
30 29 eleq2d N = 5 K J X W X 0 ..^ N X 0 ..^ 5
31 30 biimpa N = 5 K J X W X 0 ..^ N X 0 ..^ 5
32 5nn 5
33 eleq1 N = 5 N 5
34 32 33 mpbiri N = 5 N
35 1 ceilhalfelfzo1 N K J K 1 ..^ N
36 34 35 syl N = 5 K J K 1 ..^ N
37 oveq2 N = 5 1 ..^ N = 1 ..^ 5
38 37 eleq2d N = 5 K 1 ..^ N K 1 ..^ 5
39 36 38 sylibd N = 5 K J K 1 ..^ 5
40 39 imp N = 5 K J K 1 ..^ 5
41 40 ad2antrr N = 5 K J X W X 0 ..^ N K 1 ..^ 5
42 minusmod5ne X 0 ..^ 5 K 1 ..^ 5 X K mod 5 X
43 31 41 42 syl2anc N = 5 K J X W X 0 ..^ N X K mod 5 X
44 oveq2 N = 5 X K mod N = X K mod 5
45 44 neeq1d N = 5 X K mod N X X K mod 5 X
46 45 adantr N = 5 K J X K mod N X X K mod 5 X
47 46 ad2antrr N = 5 K J X W X 0 ..^ N X K mod N X X K mod 5 X
48 43 47 mpbird N = 5 K J X W X 0 ..^ N X K mod N X
49 48 ex N = 5 K J X W X 0 ..^ N X K mod N X
50 49 adantl X = x N = 5 K J X W X 0 ..^ N X K mod N X
51 27 50 sylbird X = x N = 5 K J X W x 0 ..^ N X K mod N X
52 51 impr X = x N = 5 K J X W x 0 ..^ N X K mod N X
53 neeq2 X = x X K mod N X X K mod N x
54 53 adantr X = x N = 5 K J X W x 0 ..^ N X K mod N X X K mod N x
55 52 54 mpbid X = x N = 5 K J X W x 0 ..^ N X K mod N x
56 55 orcd X = x N = 5 K J X W x 0 ..^ N X K mod N x X x
57 56 ex X = x N = 5 K J X W x 0 ..^ N X K mod N x X x
58 olc X x X K mod N x X x
59 58 a1d X x N = 5 K J X W x 0 ..^ N X K mod N x X x
60 57 59 pm2.61ine N = 5 K J X W x 0 ..^ N X K mod N x X x
61 14 15 opthne 1 X K mod N 1 x 1 1 X K mod N x
62 neirr ¬ 1 1
63 62 biorfi X K mod N x 1 1 X K mod N x
64 61 63 bitr4i 1 X K mod N 1 x X K mod N x
65 64 a1i N = 5 K J X W x 0 ..^ N 1 X K mod N 1 x X K mod N x
66 c0ex 0 V
67 66 a1i N = 5 K J 0 V
68 67 anim1i N = 5 K J X W 0 V X W
69 68 adantr N = 5 K J X W x 0 ..^ N 0 V X W
70 opthneg 0 V X W 0 X 0 x 0 0 X x
71 69 70 syl N = 5 K J X W x 0 ..^ N 0 X 0 x 0 0 X x
72 neirr ¬ 0 0
73 72 biorfi X x 0 0 X x
74 71 73 bitr4di N = 5 K J X W x 0 ..^ N 0 X 0 x X x
75 65 74 orbi12d N = 5 K J X W x 0 ..^ N 1 X K mod N 1 x 0 X 0 x X K mod N x X x
76 60 75 mpbird N = 5 K J X W x 0 ..^ N 1 X K mod N 1 x 0 X 0 x
77 76 orcomd N = 5 K J X W x 0 ..^ N 0 X 0 x 1 X K mod N 1 x
78 0ne1 0 1
79 78 orci 0 1 X x
80 opthneg 0 V X W 0 X 1 x 0 1 X x
81 69 80 syl N = 5 K J X W x 0 ..^ N 0 X 1 x 0 1 X x
82 79 81 mpbiri N = 5 K J X W x 0 ..^ N 0 X 1 x
83 82 orcd N = 5 K J X W x 0 ..^ N 0 X 1 x 1 X K mod N 0 x
84 77 83 jca N = 5 K J X W x 0 ..^ N 0 X 0 x 1 X K mod N 1 x 0 X 1 x 1 X K mod N 0 x
85 opex 1 x V
86 8 85 pm3.2i 0 x V 1 x V
87 7 86 pm3.2i 0 X V 1 X K mod N V 0 x V 1 x V
88 prneimg2 0 X V 1 X K mod N V 0 x V 1 x V 0 X 1 X K mod N 0 x 1 x 0 X 0 x 1 X K mod N 1 x 0 X 1 x 1 X K mod N 0 x
89 87 88 mp1i N = 5 K J X W x 0 ..^ N 0 X 1 X K mod N 0 x 1 x 0 X 0 x 1 X K mod N 1 x 0 X 1 x 1 X K mod N 0 x
90 84 89 mpbird N = 5 K J X W x 0 ..^ N 0 X 1 X K mod N 0 x 1 x
91 opex 1 x + K mod N V
92 85 91 pm3.2i 1 x V 1 x + K mod N V
93 7 92 pm3.2i 0 X V 1 X K mod N V 1 x V 1 x + K mod N V
94 78 orci 0 1 X x + K mod N
95 opthneg 0 V X W 0 X 1 x + K mod N 0 1 X x + K mod N
96 69 95 syl N = 5 K J X W x 0 ..^ N 0 X 1 x + K mod N 0 1 X x + K mod N
97 94 96 mpbiri N = 5 K J X W x 0 ..^ N 0 X 1 x + K mod N
98 82 97 jca N = 5 K J X W x 0 ..^ N 0 X 1 x 0 X 1 x + K mod N
99 98 orcd N = 5 K J X W x 0 ..^ N 0 X 1 x 0 X 1 x + K mod N 1 X K mod N 1 x 1 X K mod N 1 x + K mod N
100 prneimg 0 X V 1 X K mod N V 1 x V 1 x + K mod N V 0 X 1 x 0 X 1 x + K mod N 1 X K mod N 1 x 1 X K mod N 1 x + K mod N 0 X 1 X K mod N 1 x 1 x + K mod N
101 93 99 100 mpsyl N = 5 K J X W x 0 ..^ N 0 X 1 X K mod N 1 x 1 x + K mod N
102 25 90 101 3jca N = 5 K J X W x 0 ..^ N 0 X 1 X K mod N 0 x 0 x + 1 mod N 0 X 1 X K mod N 0 x 1 x 0 X 1 X K mod N 1 x 1 x + K mod N
103 102 ralrimiva N = 5 K J X W x 0 ..^ N 0 X 1 X K mod N 0 x 0 x + 1 mod N 0 X 1 X K mod N 0 x 1 x 0 X 1 X K mod N 1 x 1 x + K mod N
104 ralnex x 0 ..^ N ¬ 0 X 1 X K mod N = 0 x 0 x + 1 mod N 0 X 1 X K mod N = 0 x 1 x 0 X 1 X K mod N = 1 x 1 x + K mod N ¬ x 0 ..^ N 0 X 1 X K mod N = 0 x 0 x + 1 mod N 0 X 1 X K mod N = 0 x 1 x 0 X 1 X K mod N = 1 x 1 x + K mod N
105 3ioran ¬ 0 X 1 X K mod N = 0 x 0 x + 1 mod N 0 X 1 X K mod N = 0 x 1 x 0 X 1 X K mod N = 1 x 1 x + K mod N ¬ 0 X 1 X K mod N = 0 x 0 x + 1 mod N ¬ 0 X 1 X K mod N = 0 x 1 x ¬ 0 X 1 X K mod N = 1 x 1 x + K mod N
106 df-ne 0 X 1 X K mod N 0 x 0 x + 1 mod N ¬ 0 X 1 X K mod N = 0 x 0 x + 1 mod N
107 df-ne 0 X 1 X K mod N 0 x 1 x ¬ 0 X 1 X K mod N = 0 x 1 x
108 df-ne 0 X 1 X K mod N 1 x 1 x + K mod N ¬ 0 X 1 X K mod N = 1 x 1 x + K mod N
109 106 107 108 3anbi123i 0 X 1 X K mod N 0 x 0 x + 1 mod N 0 X 1 X K mod N 0 x 1 x 0 X 1 X K mod N 1 x 1 x + K mod N ¬ 0 X 1 X K mod N = 0 x 0 x + 1 mod N ¬ 0 X 1 X K mod N = 0 x 1 x ¬ 0 X 1 X K mod N = 1 x 1 x + K mod N
110 105 109 bitr4i ¬ 0 X 1 X K mod N = 0 x 0 x + 1 mod N 0 X 1 X K mod N = 0 x 1 x 0 X 1 X K mod N = 1 x 1 x + K mod N 0 X 1 X K mod N 0 x 0 x + 1 mod N 0 X 1 X K mod N 0 x 1 x 0 X 1 X K mod N 1 x 1 x + K mod N
111 110 ralbii x 0 ..^ N ¬ 0 X 1 X K mod N = 0 x 0 x + 1 mod N 0 X 1 X K mod N = 0 x 1 x 0 X 1 X K mod N = 1 x 1 x + K mod N x 0 ..^ N 0 X 1 X K mod N 0 x 0 x + 1 mod N 0 X 1 X K mod N 0 x 1 x 0 X 1 X K mod N 1 x 1 x + K mod N
112 104 111 bitr3i ¬ x 0 ..^ N 0 X 1 X K mod N = 0 x 0 x + 1 mod N 0 X 1 X K mod N = 0 x 1 x 0 X 1 X K mod N = 1 x 1 x + K mod N x 0 ..^ N 0 X 1 X K mod N 0 x 0 x + 1 mod N 0 X 1 X K mod N 0 x 1 x 0 X 1 X K mod N 1 x 1 x + K mod N
113 103 112 sylibr N = 5 K J X W ¬ x 0 ..^ N 0 X 1 X K mod N = 0 x 0 x + 1 mod N 0 X 1 X K mod N = 0 x 1 x 0 X 1 X K mod N = 1 x 1 x + K mod N
114 5eluz3 5 3
115 eleq1 N = 5 N 3 5 3
116 114 115 mpbiri N = 5 N 3
117 eqid 0 ..^ N = 0 ..^ N
118 117 1 2 4 gpgedgel N 3 K J 0 X 1 X K mod N E x 0 ..^ N 0 X 1 X K mod N = 0 x 0 x + 1 mod N 0 X 1 X K mod N = 0 x 1 x 0 X 1 X K mod N = 1 x 1 x + K mod N
119 116 118 sylan N = 5 K J 0 X 1 X K mod N E x 0 ..^ N 0 X 1 X K mod N = 0 x 0 x + 1 mod N 0 X 1 X K mod N = 0 x 1 x 0 X 1 X K mod N = 1 x 1 x + K mod N
120 119 adantr N = 5 K J X W 0 X 1 X K mod N E x 0 ..^ N 0 X 1 X K mod N = 0 x 0 x + 1 mod N 0 X 1 X K mod N = 0 x 1 x 0 X 1 X K mod N = 1 x 1 x + K mod N
121 113 120 mtbird N = 5 K J X W ¬ 0 X 1 X K mod N E
122 df-nel 0 X 1 X K mod N E ¬ 0 X 1 X K mod N E
123 121 122 sylibr N = 5 K J X W 0 X 1 X K mod N E