Metamath Proof Explorer


Theorem grlimprclnbgrvtx

Description: For two locally isomorphic graphs G and H and a vertex A of G there is a bijection f mapping the closed neighborhood N of A onto the closed neighborhood M of ( FA ) , so that the mapped vertices of an edge { A , B } containing the vertex A is an edge between the vertices in M containing the vertex ( FA ) . (Contributed by AV, 28-Dec-2025)

Ref Expression
Hypotheses clnbgrvtxedg.n N = G ClNeighbVtx A
clnbgrvtxedg.i I = Edg G
clnbgrvtxedg.k K = x I | x N
grlimedgclnbgr.m M = H ClNeighbVtx F A
grlimedgclnbgr.j J = Edg H
grlimedgclnbgr.l L = x J | x M
Assertion grlimprclnbgrvtx G USHGraph H USHGraph F G GraphLocIso H A V B W A B I f f : N 1-1 onto M F A f B L F A f A L

Proof

Step Hyp Ref Expression
1 clnbgrvtxedg.n N = G ClNeighbVtx A
2 clnbgrvtxedg.i I = Edg G
3 clnbgrvtxedg.k K = x I | x N
4 grlimedgclnbgr.m M = H ClNeighbVtx F A
5 grlimedgclnbgr.j J = Edg H
6 grlimedgclnbgr.l L = x J | x M
7 1 2 3 4 5 6 grlimprclnbgredg G USHGraph H USHGraph F G GraphLocIso H A V B W A B I f f : N 1-1 onto M f A f B L
8 simprl G USHGraph H USHGraph F G GraphLocIso H A V B W A B I f : N 1-1 onto M f A f B L f : N 1-1 onto M
9 sseq1 x = f A f B x M f A f B M
10 9 6 elrab2 f A f B L f A f B J f A f B M
11 10 biimpi f A f B L f A f B J f A f B M
12 11 adantl f : N 1-1 onto M f A f B L f A f B J f A f B M
13 12 adantl G USHGraph H USHGraph F G GraphLocIso H A V B W A B I f : N 1-1 onto M f A f B L f A f B J f A f B M
14 fvex f A V
15 fvex f B V
16 14 15 prss f A M f B M f A f B M
17 uspgrupgr H USHGraph H UPGraph
18 17 adantl G USHGraph H USHGraph H UPGraph
19 18 3ad2ant1 G USHGraph H USHGraph F G GraphLocIso H A V B W A B I H UPGraph
20 19 ad2antrr G USHGraph H USHGraph F G GraphLocIso H A V B W A B I f : N 1-1 onto M f A f B L f A f B J H UPGraph
21 4 eleq2i f A M f A H ClNeighbVtx F A
22 5 clnbupgreli H UPGraph f A H ClNeighbVtx F A f A = F A f A F A J
23 22 ex H UPGraph f A H ClNeighbVtx F A f A = F A f A F A J
24 21 23 biimtrid H UPGraph f A M f A = F A f A F A J
25 4 eleq2i f B M f B H ClNeighbVtx F A
26 5 clnbupgreli H UPGraph f B H ClNeighbVtx F A f B = F A f B F A J
27 26 ex H UPGraph f B H ClNeighbVtx F A f B = F A f B F A J
28 25 27 biimtrid H UPGraph f B M f B = F A f B F A J
29 24 28 anim12d H UPGraph f A M f B M f A = F A f A F A J f B = F A f B F A J
30 20 29 syl G USHGraph H USHGraph F G GraphLocIso H A V B W A B I f : N 1-1 onto M f A f B L f A f B J f A M f B M f A = F A f A F A J f B = F A f B F A J
31 30 imp G USHGraph H USHGraph F G GraphLocIso H A V B W A B I f : N 1-1 onto M f A f B L f A f B J f A M f B M f A = F A f A F A J f B = F A f B F A J
32 prcom f A f B = f B f A
33 preq1 f B = F A f B f A = F A f A
34 32 33 eqtrid f B = F A f A f B = F A f A
35 34 eleq1d f B = F A f A f B L F A f A L
36 35 biimpcd f A f B L f B = F A F A f A L
37 36 adantl f : N 1-1 onto M f A f B L f B = F A F A f A L
38 37 adantl G USHGraph H USHGraph F G GraphLocIso H A V B W A B I f : N 1-1 onto M f A f B L f B = F A F A f A L
39 38 ad2antrr G USHGraph H USHGraph F G GraphLocIso H A V B W A B I f : N 1-1 onto M f A f B L f A f B J f A M f B M f B = F A F A f A L
40 prcom f B F A = F A f B
41 40 eleq1i f B F A J F A f B J
42 41 biimpi f B F A J F A f B J
43 42 adantl G USHGraph H USHGraph F G GraphLocIso H A V B W A B I f : N 1-1 onto M f A f B L f A f B J f A M f B M f B F A J F A f B J
44 20 ad2antrr G USHGraph H USHGraph F G GraphLocIso H A V B W A B I f : N 1-1 onto M f A f B L f A f B J f A M f B M f B F A J H UPGraph
45 fvex F A V
46 15 45 pm3.2i f B V F A V
47 46 a1i G USHGraph H USHGraph F G GraphLocIso H A V B W A B I f : N 1-1 onto M f A f B L f A f B J f A M f B M f B F A J f B V F A V
48 simpr G USHGraph H USHGraph F G GraphLocIso H A V B W A B I f : N 1-1 onto M f A f B L f A f B J f A M f B M f B F A J f B F A J
49 44 47 48 3jca G USHGraph H USHGraph F G GraphLocIso H A V B W A B I f : N 1-1 onto M f A f B L f A f B J f A M f B M f B F A J H UPGraph f B V F A V f B F A J
50 eqid Vtx H = Vtx H
51 50 5 upgrpredgv H UPGraph f B V F A V f B F A J f B Vtx H F A Vtx H
52 simpr f B Vtx H F A Vtx H F A Vtx H
53 49 51 52 3syl G USHGraph H USHGraph F G GraphLocIso H A V B W A B I f : N 1-1 onto M f A f B L f A f B J f A M f B M f B F A J F A Vtx H
54 50 clnbgrvtxel F A Vtx H F A H ClNeighbVtx F A
55 4 eleq2i F A M F A H ClNeighbVtx F A
56 54 55 sylibr F A Vtx H F A M
57 53 56 syl G USHGraph H USHGraph F G GraphLocIso H A V B W A B I f : N 1-1 onto M f A f B L f A f B J f A M f B M f B F A J F A M
58 simplrr G USHGraph H USHGraph F G GraphLocIso H A V B W A B I f : N 1-1 onto M f A f B L f A f B J f A M f B M f B F A J f B M
59 57 58 prssd G USHGraph H USHGraph F G GraphLocIso H A V B W A B I f : N 1-1 onto M f A f B L f A f B J f A M f B M f B F A J F A f B M
60 sseq1 x = F A f B x M F A f B M
61 60 6 elrab2 F A f B L F A f B J F A f B M
62 43 59 61 sylanbrc G USHGraph H USHGraph F G GraphLocIso H A V B W A B I f : N 1-1 onto M f A f B L f A f B J f A M f B M f B F A J F A f B L
63 62 ex G USHGraph H USHGraph F G GraphLocIso H A V B W A B I f : N 1-1 onto M f A f B L f A f B J f A M f B M f B F A J F A f B L
64 39 63 orim12d G USHGraph H USHGraph F G GraphLocIso H A V B W A B I f : N 1-1 onto M f A f B L f A f B J f A M f B M f B = F A f B F A J F A f A L F A f B L
65 64 imp G USHGraph H USHGraph F G GraphLocIso H A V B W A B I f : N 1-1 onto M f A f B L f A f B J f A M f B M f B = F A f B F A J F A f A L F A f B L
66 65 orcomd G USHGraph H USHGraph F G GraphLocIso H A V B W A B I f : N 1-1 onto M f A f B L f A f B J f A M f B M f B = F A f B F A J F A f B L F A f A L
67 66 ex G USHGraph H USHGraph F G GraphLocIso H A V B W A B I f : N 1-1 onto M f A f B L f A f B J f A M f B M f B = F A f B F A J F A f B L F A f A L
68 67 adantld G USHGraph H USHGraph F G GraphLocIso H A V B W A B I f : N 1-1 onto M f A f B L f A f B J f A M f B M f A = F A f A F A J f B = F A f B F A J F A f B L F A f A L
69 31 68 mpd G USHGraph H USHGraph F G GraphLocIso H A V B W A B I f : N 1-1 onto M f A f B L f A f B J f A M f B M F A f B L F A f A L
70 69 ex G USHGraph H USHGraph F G GraphLocIso H A V B W A B I f : N 1-1 onto M f A f B L f A f B J f A M f B M F A f B L F A f A L
71 16 70 biimtrrid G USHGraph H USHGraph F G GraphLocIso H A V B W A B I f : N 1-1 onto M f A f B L f A f B J f A f B M F A f B L F A f A L
72 71 expimpd G USHGraph H USHGraph F G GraphLocIso H A V B W A B I f : N 1-1 onto M f A f B L f A f B J f A f B M F A f B L F A f A L
73 13 72 mpd G USHGraph H USHGraph F G GraphLocIso H A V B W A B I f : N 1-1 onto M f A f B L F A f B L F A f A L
74 8 73 jca G USHGraph H USHGraph F G GraphLocIso H A V B W A B I f : N 1-1 onto M f A f B L f : N 1-1 onto M F A f B L F A f A L
75 74 ex G USHGraph H USHGraph F G GraphLocIso H A V B W A B I f : N 1-1 onto M f A f B L f : N 1-1 onto M F A f B L F A f A L
76 75 eximdv G USHGraph H USHGraph F G GraphLocIso H A V B W A B I f f : N 1-1 onto M f A f B L f f : N 1-1 onto M F A f B L F A f A L
77 7 76 mpd G USHGraph H USHGraph F G GraphLocIso H A V B W A B I f f : N 1-1 onto M F A f B L F A f A L