| Step |
Hyp |
Ref |
Expression |
| 1 |
|
clnbgrvtxedg.n |
|
| 2 |
|
clnbgrvtxedg.i |
|
| 3 |
|
clnbgrvtxedg.k |
|
| 4 |
|
grlimedgclnbgr.m |
|
| 5 |
|
grlimedgclnbgr.j |
|
| 6 |
|
grlimedgclnbgr.l |
|
| 7 |
1 2 3 4 5 6
|
grlimprclnbgredg |
|
| 8 |
|
simprl |
|
| 9 |
|
sseq1 |
|
| 10 |
9 6
|
elrab2 |
|
| 11 |
10
|
biimpi |
|
| 12 |
11
|
adantl |
|
| 13 |
12
|
adantl |
|
| 14 |
|
fvex |
|
| 15 |
|
fvex |
|
| 16 |
14 15
|
prss |
|
| 17 |
|
uspgrupgr |
|
| 18 |
17
|
adantl |
|
| 19 |
18
|
3ad2ant1 |
|
| 20 |
19
|
ad2antrr |
|
| 21 |
4
|
eleq2i |
|
| 22 |
5
|
clnbupgreli |
|
| 23 |
22
|
ex |
|
| 24 |
21 23
|
biimtrid |
|
| 25 |
4
|
eleq2i |
|
| 26 |
5
|
clnbupgreli |
|
| 27 |
26
|
ex |
|
| 28 |
25 27
|
biimtrid |
|
| 29 |
24 28
|
anim12d |
|
| 30 |
20 29
|
syl |
|
| 31 |
30
|
imp |
|
| 32 |
|
prcom |
|
| 33 |
|
preq1 |
|
| 34 |
32 33
|
eqtrid |
|
| 35 |
34
|
eleq1d |
|
| 36 |
35
|
biimpcd |
|
| 37 |
36
|
adantl |
|
| 38 |
37
|
adantl |
|
| 39 |
38
|
ad2antrr |
|
| 40 |
|
prcom |
|
| 41 |
40
|
eleq1i |
|
| 42 |
41
|
biimpi |
|
| 43 |
42
|
adantl |
|
| 44 |
20
|
ad2antrr |
|
| 45 |
|
fvex |
|
| 46 |
15 45
|
pm3.2i |
|
| 47 |
46
|
a1i |
|
| 48 |
|
simpr |
|
| 49 |
44 47 48
|
3jca |
|
| 50 |
|
eqid |
|
| 51 |
50 5
|
upgrpredgv |
|
| 52 |
|
simpr |
|
| 53 |
49 51 52
|
3syl |
|
| 54 |
50
|
clnbgrvtxel |
|
| 55 |
4
|
eleq2i |
|
| 56 |
54 55
|
sylibr |
|
| 57 |
53 56
|
syl |
|
| 58 |
|
simplrr |
|
| 59 |
57 58
|
prssd |
|
| 60 |
|
sseq1 |
|
| 61 |
60 6
|
elrab2 |
|
| 62 |
43 59 61
|
sylanbrc |
|
| 63 |
62
|
ex |
|
| 64 |
39 63
|
orim12d |
|
| 65 |
64
|
imp |
|
| 66 |
65
|
orcomd |
|
| 67 |
66
|
ex |
|
| 68 |
67
|
adantld |
|
| 69 |
31 68
|
mpd |
|
| 70 |
69
|
ex |
|
| 71 |
16 70
|
biimtrrid |
|
| 72 |
71
|
expimpd |
|
| 73 |
13 72
|
mpd |
|
| 74 |
8 73
|
jca |
|
| 75 |
74
|
ex |
|
| 76 |
75
|
eximdv |
|
| 77 |
7 76
|
mpd |
|