Metamath Proof Explorer


Theorem grpoideu

Description: The left identity element of a group is unique. Lemma 2.2.1(a) of Herstein p. 55. (Contributed by NM, 14-Oct-2006) (New usage is discouraged.)

Ref Expression
Hypothesis grpfo.1 X=ranG
Assertion grpoideu GGrpOp∃!uXxXuGx=x

Proof

Step Hyp Ref Expression
1 grpfo.1 X=ranG
2 1 grpoidinv GGrpOpuXzXuGz=zzGu=zyXyGz=uzGy=u
3 simpll uGz=zzGu=zyXyGz=uzGy=uuGz=z
4 3 ralimi zXuGz=zzGu=zyXyGz=uzGy=uzXuGz=z
5 oveq2 z=xuGz=uGx
6 id z=xz=x
7 5 6 eqeq12d z=xuGz=zuGx=x
8 7 cbvralvw zXuGz=zxXuGx=x
9 4 8 sylib zXuGz=zzGu=zyXyGz=uzGy=uxXuGx=x
10 9 adantl GGrpOpuXzXuGz=zzGu=zyXyGz=uzGy=uxXuGx=x
11 9 ad2antlr GGrpOpuXzXuGz=zzGu=zyXyGz=uzGy=uwXxXuGx=x
12 simpr uGz=zzGu=zyXyGz=uzGy=uyXyGz=uzGy=u
13 12 ralimi zXuGz=zzGu=zyXyGz=uzGy=uzXyXyGz=uzGy=u
14 oveq2 z=wyGz=yGw
15 14 eqeq1d z=wyGz=uyGw=u
16 oveq1 z=wzGy=wGy
17 16 eqeq1d z=wzGy=uwGy=u
18 15 17 anbi12d z=wyGz=uzGy=uyGw=uwGy=u
19 18 rexbidv z=wyXyGz=uzGy=uyXyGw=uwGy=u
20 19 rspcva wXzXyXyGz=uzGy=uyXyGw=uwGy=u
21 20 adantll GGrpOpwXzXyXyGz=uzGy=uyXyGw=uwGy=u
22 13 21 sylan2 GGrpOpwXzXuGz=zzGu=zyXyGz=uzGy=uyXyGw=uwGy=u
23 1 grpoidinvlem4 GGrpOpwXyXyGw=uwGy=uwGu=uGw
24 22 23 syldan GGrpOpwXzXuGz=zzGu=zyXyGz=uzGy=uwGu=uGw
25 24 an32s GGrpOpzXuGz=zzGu=zyXyGz=uzGy=uwXwGu=uGw
26 25 adantllr GGrpOpuXzXuGz=zzGu=zyXyGz=uzGy=uwXwGu=uGw
27 26 adantr GGrpOpuXzXuGz=zzGu=zyXyGz=uzGy=uwXxXuGx=xxXwGx=xwGu=uGw
28 oveq2 x=uwGx=wGu
29 id x=ux=u
30 28 29 eqeq12d x=uwGx=xwGu=u
31 30 rspcva uXxXwGx=xwGu=u
32 31 adantll GGrpOpuXxXwGx=xwGu=u
33 32 ad2ant2rl GGrpOpuXwXxXuGx=xxXwGx=xwGu=u
34 33 adantllr GGrpOpuXzXuGz=zzGu=zyXyGz=uzGy=uwXxXuGx=xxXwGx=xwGu=u
35 oveq2 x=wuGx=uGw
36 id x=wx=w
37 35 36 eqeq12d x=wuGx=xuGw=w
38 37 rspcva wXxXuGx=xuGw=w
39 38 ad2ant2lr GGrpOpuXzXuGz=zzGu=zyXyGz=uzGy=uwXxXuGx=xxXwGx=xuGw=w
40 27 34 39 3eqtr3d GGrpOpuXzXuGz=zzGu=zyXyGz=uzGy=uwXxXuGx=xxXwGx=xu=w
41 40 ex GGrpOpuXzXuGz=zzGu=zyXyGz=uzGy=uwXxXuGx=xxXwGx=xu=w
42 11 41 mpand GGrpOpuXzXuGz=zzGu=zyXyGz=uzGy=uwXxXwGx=xu=w
43 42 ralrimiva GGrpOpuXzXuGz=zzGu=zyXyGz=uzGy=uwXxXwGx=xu=w
44 10 43 jca GGrpOpuXzXuGz=zzGu=zyXyGz=uzGy=uxXuGx=xwXxXwGx=xu=w
45 44 ex GGrpOpuXzXuGz=zzGu=zyXyGz=uzGy=uxXuGx=xwXxXwGx=xu=w
46 45 reximdva GGrpOpuXzXuGz=zzGu=zyXyGz=uzGy=uuXxXuGx=xwXxXwGx=xu=w
47 2 46 mpd GGrpOpuXxXuGx=xwXxXwGx=xu=w
48 oveq1 u=wuGx=wGx
49 48 eqeq1d u=wuGx=xwGx=x
50 49 ralbidv u=wxXuGx=xxXwGx=x
51 50 reu8 ∃!uXxXuGx=xuXxXuGx=xwXxXwGx=xu=w
52 47 51 sylibr GGrpOp∃!uXxXuGx=x