Metamath Proof Explorer


Theorem grpoidinv2

Description: A group's properties using the explicit identity element. (Contributed by NM, 5-Feb-2010) (Revised by Mario Carneiro, 15-Dec-2013) (New usage is discouraged.)

Ref Expression
Hypotheses grpoidval.1 X=ranG
grpoidval.2 U=GIdG
Assertion grpoidinv2 GGrpOpAXUGA=AAGU=AyXyGA=UAGy=U

Proof

Step Hyp Ref Expression
1 grpoidval.1 X=ranG
2 grpoidval.2 U=GIdG
3 1 2 grpoidval GGrpOpU=ιuX|xXuGx=x
4 1 grpoideu GGrpOp∃!uXxXuGx=x
5 riotacl2 ∃!uXxXuGx=xιuX|xXuGx=xuX|xXuGx=x
6 4 5 syl GGrpOpιuX|xXuGx=xuX|xXuGx=x
7 3 6 eqeltrd GGrpOpUuX|xXuGx=x
8 simpll uGx=xxGu=xyXyGx=uxGy=uuGx=x
9 8 ralimi xXuGx=xxGu=xyXyGx=uxGy=uxXuGx=x
10 9 rgenw uXxXuGx=xxGu=xyXyGx=uxGy=uxXuGx=x
11 10 a1i GGrpOpuXxXuGx=xxGu=xyXyGx=uxGy=uxXuGx=x
12 1 grpoidinv GGrpOpuXxXuGx=xxGu=xyXyGx=uxGy=u
13 11 12 4 3jca GGrpOpuXxXuGx=xxGu=xyXyGx=uxGy=uxXuGx=xuXxXuGx=xxGu=xyXyGx=uxGy=u∃!uXxXuGx=x
14 reupick2 uXxXuGx=xxGu=xyXyGx=uxGy=uxXuGx=xuXxXuGx=xxGu=xyXyGx=uxGy=u∃!uXxXuGx=xuXxXuGx=xxXuGx=xxGu=xyXyGx=uxGy=u
15 13 14 sylan GGrpOpuXxXuGx=xxXuGx=xxGu=xyXyGx=uxGy=u
16 15 rabbidva GGrpOpuX|xXuGx=x=uX|xXuGx=xxGu=xyXyGx=uxGy=u
17 7 16 eleqtrd GGrpOpUuX|xXuGx=xxGu=xyXyGx=uxGy=u
18 oveq1 u=UuGx=UGx
19 18 eqeq1d u=UuGx=xUGx=x
20 oveq2 u=UxGu=xGU
21 20 eqeq1d u=UxGu=xxGU=x
22 19 21 anbi12d u=UuGx=xxGu=xUGx=xxGU=x
23 eqeq2 u=UyGx=uyGx=U
24 eqeq2 u=UxGy=uxGy=U
25 23 24 anbi12d u=UyGx=uxGy=uyGx=UxGy=U
26 25 rexbidv u=UyXyGx=uxGy=uyXyGx=UxGy=U
27 22 26 anbi12d u=UuGx=xxGu=xyXyGx=uxGy=uUGx=xxGU=xyXyGx=UxGy=U
28 27 ralbidv u=UxXuGx=xxGu=xyXyGx=uxGy=uxXUGx=xxGU=xyXyGx=UxGy=U
29 28 elrab UuX|xXuGx=xxGu=xyXyGx=uxGy=uUXxXUGx=xxGU=xyXyGx=UxGy=U
30 17 29 sylib GGrpOpUXxXUGx=xxGU=xyXyGx=UxGy=U
31 30 simprd GGrpOpxXUGx=xxGU=xyXyGx=UxGy=U
32 oveq2 x=AUGx=UGA
33 id x=Ax=A
34 32 33 eqeq12d x=AUGx=xUGA=A
35 oveq1 x=AxGU=AGU
36 35 33 eqeq12d x=AxGU=xAGU=A
37 34 36 anbi12d x=AUGx=xxGU=xUGA=AAGU=A
38 oveq2 x=AyGx=yGA
39 38 eqeq1d x=AyGx=UyGA=U
40 oveq1 x=AxGy=AGy
41 40 eqeq1d x=AxGy=UAGy=U
42 39 41 anbi12d x=AyGx=UxGy=UyGA=UAGy=U
43 42 rexbidv x=AyXyGx=UxGy=UyXyGA=UAGy=U
44 37 43 anbi12d x=AUGx=xxGU=xyXyGx=UxGy=UUGA=AAGU=AyXyGA=UAGy=U
45 44 rspccva xXUGx=xxGU=xyXyGx=UxGy=UAXUGA=AAGU=AyXyGA=UAGy=U
46 31 45 sylan GGrpOpAXUGA=AAGU=AyXyGA=UAGy=U