Description: A group's properties using the explicit identity element. (Contributed by NM, 5-Feb-2010) (Revised by Mario Carneiro, 15-Dec-2013) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | grpoidval.1 | |
|
grpoidval.2 | |
||
Assertion | grpoidinv2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpoidval.1 | |
|
2 | grpoidval.2 | |
|
3 | 1 2 | grpoidval | |
4 | 1 | grpoideu | |
5 | riotacl2 | |
|
6 | 4 5 | syl | |
7 | 3 6 | eqeltrd | |
8 | simpll | |
|
9 | 8 | ralimi | |
10 | 9 | rgenw | |
11 | 10 | a1i | |
12 | 1 | grpoidinv | |
13 | 11 12 4 | 3jca | |
14 | reupick2 | |
|
15 | 13 14 | sylan | |
16 | 15 | rabbidva | |
17 | 7 16 | eleqtrd | |
18 | oveq1 | |
|
19 | 18 | eqeq1d | |
20 | oveq2 | |
|
21 | 20 | eqeq1d | |
22 | 19 21 | anbi12d | |
23 | eqeq2 | |
|
24 | eqeq2 | |
|
25 | 23 24 | anbi12d | |
26 | 25 | rexbidv | |
27 | 22 26 | anbi12d | |
28 | 27 | ralbidv | |
29 | 28 | elrab | |
30 | 17 29 | sylib | |
31 | 30 | simprd | |
32 | oveq2 | |
|
33 | id | |
|
34 | 32 33 | eqeq12d | |
35 | oveq1 | |
|
36 | 35 33 | eqeq12d | |
37 | 34 36 | anbi12d | |
38 | oveq2 | |
|
39 | 38 | eqeq1d | |
40 | oveq1 | |
|
41 | 40 | eqeq1d | |
42 | 39 41 | anbi12d | |
43 | 42 | rexbidv | |
44 | 37 43 | anbi12d | |
45 | 44 | rspccva | |
46 | 31 45 | sylan | |