Metamath Proof Explorer


Theorem gsmsymgreq

Description: Two combination of permutations moves an element of the intersection of the base sets of the permutations to the same element if each pair of corresponding permutations moves such an element to the same element. (Contributed by AV, 20-Jan-2019)

Ref Expression
Hypotheses gsmsymgrfix.s S=SymGrpN
gsmsymgrfix.b B=BaseS
gsmsymgreq.z Z=SymGrpM
gsmsymgreq.p P=BaseZ
gsmsymgreq.i I=NM
Assertion gsmsymgreq NFinMFinWWordBUWordPW=Ui0..^WnIWin=UinnISWn=ZUn

Proof

Step Hyp Ref Expression
1 gsmsymgrfix.s S=SymGrpN
2 gsmsymgrfix.b B=BaseS
3 gsmsymgreq.z Z=SymGrpM
4 gsmsymgreq.p P=BaseZ
5 gsmsymgreq.i I=NM
6 fveq2 w=w=
7 6 oveq2d w=0..^w=0..^
8 7 adantr w=u=0..^w=0..^
9 fveq1 w=wi=i
10 9 fveq1d w=win=in
11 fveq1 u=ui=i
12 11 fveq1d u=uin=in
13 10 12 eqeqan12d w=u=win=uinin=in
14 13 ralbidv w=u=nIwin=uinnIin=in
15 8 14 raleqbidv w=u=i0..^wnIwin=uini0..^nIin=in
16 oveq2 w=Sw=S
17 16 fveq1d w=Swn=Sn
18 oveq2 u=Zu=Z
19 18 fveq1d u=Zun=Zn
20 17 19 eqeqan12d w=u=Swn=ZunSn=Zn
21 20 ralbidv w=u=nISwn=ZunnISn=Zn
22 15 21 imbi12d w=u=i0..^wnIwin=uinnISwn=Zuni0..^nIin=innISn=Zn
23 22 imbi2d w=u=NFinMFini0..^wnIwin=uinnISwn=ZunNFinMFini0..^nIin=innISn=Zn
24 fveq2 w=xw=x
25 24 oveq2d w=x0..^w=0..^x
26 25 adantr w=xu=y0..^w=0..^x
27 fveq1 w=xwi=xi
28 27 fveq1d w=xwin=xin
29 fveq1 u=yui=yi
30 29 fveq1d u=yuin=yin
31 28 30 eqeqan12d w=xu=ywin=uinxin=yin
32 31 ralbidv w=xu=ynIwin=uinnIxin=yin
33 26 32 raleqbidv w=xu=yi0..^wnIwin=uini0..^xnIxin=yin
34 oveq2 w=xSw=Sx
35 34 fveq1d w=xSwn=Sxn
36 oveq2 u=yZu=Zy
37 36 fveq1d u=yZun=Zyn
38 35 37 eqeqan12d w=xu=ySwn=ZunSxn=Zyn
39 38 ralbidv w=xu=ynISwn=ZunnISxn=Zyn
40 33 39 imbi12d w=xu=yi0..^wnIwin=uinnISwn=Zuni0..^xnIxin=yinnISxn=Zyn
41 40 imbi2d w=xu=yNFinMFini0..^wnIwin=uinnISwn=ZunNFinMFini0..^xnIxin=yinnISxn=Zyn
42 fveq2 w=x++⟨“b”⟩w=x++⟨“b”⟩
43 42 oveq2d w=x++⟨“b”⟩0..^w=0..^x++⟨“b”⟩
44 43 adantr w=x++⟨“b”⟩u=y++⟨“p”⟩0..^w=0..^x++⟨“b”⟩
45 fveq1 w=x++⟨“b”⟩wi=x++⟨“b”⟩i
46 45 fveq1d w=x++⟨“b”⟩win=x++⟨“b”⟩in
47 fveq1 u=y++⟨“p”⟩ui=y++⟨“p”⟩i
48 47 fveq1d u=y++⟨“p”⟩uin=y++⟨“p”⟩in
49 46 48 eqeqan12d w=x++⟨“b”⟩u=y++⟨“p”⟩win=uinx++⟨“b”⟩in=y++⟨“p”⟩in
50 49 ralbidv w=x++⟨“b”⟩u=y++⟨“p”⟩nIwin=uinnIx++⟨“b”⟩in=y++⟨“p”⟩in
51 44 50 raleqbidv w=x++⟨“b”⟩u=y++⟨“p”⟩i0..^wnIwin=uini0..^x++⟨“b”⟩nIx++⟨“b”⟩in=y++⟨“p”⟩in
52 oveq2 w=x++⟨“b”⟩Sw=Sx++⟨“b”⟩
53 52 fveq1d w=x++⟨“b”⟩Swn=Sx++⟨“b”⟩n
54 oveq2 u=y++⟨“p”⟩Zu=Zy++⟨“p”⟩
55 54 fveq1d u=y++⟨“p”⟩Zun=Zy++⟨“p”⟩n
56 53 55 eqeqan12d w=x++⟨“b”⟩u=y++⟨“p”⟩Swn=ZunSx++⟨“b”⟩n=Zy++⟨“p”⟩n
57 56 ralbidv w=x++⟨“b”⟩u=y++⟨“p”⟩nISwn=ZunnISx++⟨“b”⟩n=Zy++⟨“p”⟩n
58 51 57 imbi12d w=x++⟨“b”⟩u=y++⟨“p”⟩i0..^wnIwin=uinnISwn=Zuni0..^x++⟨“b”⟩nIx++⟨“b”⟩in=y++⟨“p”⟩innISx++⟨“b”⟩n=Zy++⟨“p”⟩n
59 58 imbi2d w=x++⟨“b”⟩u=y++⟨“p”⟩NFinMFini0..^wnIwin=uinnISwn=ZunNFinMFini0..^x++⟨“b”⟩nIx++⟨“b”⟩in=y++⟨“p”⟩innISx++⟨“b”⟩n=Zy++⟨“p”⟩n
60 fveq2 w=Ww=W
61 60 oveq2d w=W0..^w=0..^W
62 fveq1 w=Wwi=Wi
63 62 fveq1d w=Wwin=Win
64 63 eqeq1d w=Wwin=UinWin=Uin
65 64 ralbidv w=WnIwin=UinnIWin=Uin
66 61 65 raleqbidv w=Wi0..^wnIwin=Uini0..^WnIWin=Uin
67 oveq2 w=WSw=SW
68 67 fveq1d w=WSwn=SWn
69 68 eqeq1d w=WSwn=ZUnSWn=ZUn
70 69 ralbidv w=WnISwn=ZUnnISWn=ZUn
71 66 70 imbi12d w=Wi0..^wnIwin=UinnISwn=ZUni0..^WnIWin=UinnISWn=ZUn
72 71 imbi2d w=WNFinMFini0..^wnIwin=UinnISwn=ZUnNFinMFini0..^WnIWin=UinnISWn=ZUn
73 fveq1 u=Uui=Ui
74 73 fveq1d u=Uuin=Uin
75 74 eqeq2d u=Uwin=uinwin=Uin
76 75 ralbidv u=UnIwin=uinnIwin=Uin
77 76 ralbidv u=Ui0..^wnIwin=uini0..^wnIwin=Uin
78 oveq2 u=UZu=ZU
79 78 fveq1d u=UZun=ZUn
80 79 eqeq2d u=USwn=ZunSwn=ZUn
81 80 ralbidv u=UnISwn=ZunnISwn=ZUn
82 77 81 imbi12d u=Ui0..^wnIwin=uinnISwn=Zuni0..^wnIwin=UinnISwn=ZUn
83 82 imbi2d u=UNFinMFini0..^wnIwin=uinnISwn=ZunNFinMFini0..^wnIwin=UinnISwn=ZUn
84 eleq2 I=NMnInNM
85 elin nNMnNnM
86 84 85 bitrdi I=NMnInNnM
87 simpl nNnMnN
88 86 87 syl6bi I=NMnInN
89 5 88 ax-mp nInN
90 89 adantl NFinMFinnInN
91 fvresi nNINn=n
92 90 91 syl NFinMFinnIINn=n
93 simpr nNnMnM
94 86 93 syl6bi I=NMnInM
95 5 94 ax-mp nInM
96 95 adantl NFinMFinnInM
97 fvresi nMIMn=n
98 96 97 syl NFinMFinnIIMn=n
99 92 98 eqtr4d NFinMFinnIINn=IMn
100 99 ralrimiva NFinMFinnIINn=IMn
101 eqid 0S=0S
102 101 gsum0 S=0S
103 1 symgid NFinIN=0S
104 103 adantr NFinMFinIN=0S
105 102 104 eqtr4id NFinMFinS=IN
106 105 fveq1d NFinMFinSn=INn
107 eqid 0Z=0Z
108 107 gsum0 Z=0Z
109 3 symgid MFinIM=0Z
110 109 adantl NFinMFinIM=0Z
111 108 110 eqtr4id NFinMFinZ=IM
112 111 fveq1d NFinMFinZn=IMn
113 106 112 eqeq12d NFinMFinSn=ZnINn=IMn
114 113 ralbidv NFinMFinnISn=ZnnIINn=IMn
115 100 114 mpbird NFinMFinnISn=Zn
116 115 a1d NFinMFini0..^nIin=innISn=Zn
117 1 2 3 4 5 gsmsymgreqlem2 NFinMFinxWordBbByWordPpPx=yi0..^xnIxin=yinnISxn=Zyni0..^x++⟨“b”⟩nIx++⟨“b”⟩in=y++⟨“p”⟩innISx++⟨“b”⟩n=Zy++⟨“p”⟩n
118 117 expcom xWordBbByWordPpPx=yNFinMFini0..^xnIxin=yinnISxn=Zyni0..^x++⟨“b”⟩nIx++⟨“b”⟩in=y++⟨“p”⟩innISx++⟨“b”⟩n=Zy++⟨“p”⟩n
119 118 a2d xWordBbByWordPpPx=yNFinMFini0..^xnIxin=yinnISxn=ZynNFinMFini0..^x++⟨“b”⟩nIx++⟨“b”⟩in=y++⟨“p”⟩innISx++⟨“b”⟩n=Zy++⟨“p”⟩n
120 23 41 59 72 83 116 119 wrd2ind WWordBUWordPW=UNFinMFini0..^WnIWin=UinnISWn=ZUn
121 120 impcom NFinMFinWWordBUWordPW=Ui0..^WnIWin=UinnISWn=ZUn