Metamath Proof Explorer


Theorem gsummptf1o

Description: Re-index a finite group sum using a bijection. (Contributed by Thierry Arnoux, 29-Mar-2018)

Ref Expression
Hypotheses gsummptf1o.x _xH
gsummptf1o.b B=BaseG
gsummptf1o.z 0˙=0G
gsummptf1o.i x=EC=H
gsummptf1o.g φGCMnd
gsummptf1o.a φAFin
gsummptf1o.d φFB
gsummptf1o.f φxACF
gsummptf1o.e φyDEA
gsummptf1o.h φxA∃!yDx=E
Assertion gsummptf1o φGxAC=GyDH

Proof

Step Hyp Ref Expression
1 gsummptf1o.x _xH
2 gsummptf1o.b B=BaseG
3 gsummptf1o.z 0˙=0G
4 gsummptf1o.i x=EC=H
5 gsummptf1o.g φGCMnd
6 gsummptf1o.a φAFin
7 gsummptf1o.d φFB
8 gsummptf1o.f φxACF
9 gsummptf1o.e φyDEA
10 gsummptf1o.h φxA∃!yDx=E
11 7 adantr φxAFB
12 11 8 sseldd φxACB
13 12 fmpttd φxAC:AB
14 eqid xAC=xAC
15 3 fvexi 0˙V
16 15 a1i φ0˙V
17 14 6 12 16 fsuppmptdm φfinSupp0˙xAC
18 9 ralrimiva φyDEA
19 10 ralrimiva φxA∃!yDx=E
20 eqid yDE=yDE
21 20 f1ompt yDE:D1-1 ontoAyDEAxA∃!yDx=E
22 18 19 21 sylanbrc φyDE:D1-1 ontoA
23 2 3 5 6 13 17 22 gsumf1o φGxAC=GxACyDE
24 eqidd φyDE=yDE
25 eqidd φxAC=xAC
26 18 24 25 fmptcos φxACyDE=yDE/xC
27 nfv xφyD
28 1 a1i φyD_xH
29 4 adantl φyDx=EC=H
30 27 28 9 29 csbiedf φyDE/xC=H
31 30 mpteq2dva φyDE/xC=yDH
32 26 31 eqtrd φxACyDE=yDH
33 32 oveq2d φGxACyDE=GyDH
34 23 33 eqtrd φGxAC=GyDH