Description: Re-index a finite group sum using a bijection. (Contributed by Thierry Arnoux, 29-Mar-2018)
Ref | Expression | ||
---|---|---|---|
Hypotheses | gsummptf1o.x | |
|
gsummptf1o.b | |
||
gsummptf1o.z | |
||
gsummptf1o.i | |
||
gsummptf1o.g | |
||
gsummptf1o.a | |
||
gsummptf1o.d | |
||
gsummptf1o.f | |
||
gsummptf1o.e | |
||
gsummptf1o.h | |
||
Assertion | gsummptf1o | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsummptf1o.x | |
|
2 | gsummptf1o.b | |
|
3 | gsummptf1o.z | |
|
4 | gsummptf1o.i | |
|
5 | gsummptf1o.g | |
|
6 | gsummptf1o.a | |
|
7 | gsummptf1o.d | |
|
8 | gsummptf1o.f | |
|
9 | gsummptf1o.e | |
|
10 | gsummptf1o.h | |
|
11 | 7 | adantr | |
12 | 11 8 | sseldd | |
13 | 12 | fmpttd | |
14 | eqid | |
|
15 | 3 | fvexi | |
16 | 15 | a1i | |
17 | 14 6 12 16 | fsuppmptdm | |
18 | 9 | ralrimiva | |
19 | 10 | ralrimiva | |
20 | eqid | |
|
21 | 20 | f1ompt | |
22 | 18 19 21 | sylanbrc | |
23 | 2 3 5 6 13 17 22 | gsumf1o | |
24 | eqidd | |
|
25 | eqidd | |
|
26 | 18 24 25 | fmptcos | |
27 | nfv | |
|
28 | 1 | a1i | |
29 | 4 | adantl | |
30 | 27 28 9 29 | csbiedf | |
31 | 30 | mpteq2dva | |
32 | 26 31 | eqtrd | |
33 | 32 | oveq2d | |
34 | 23 33 | eqtrd | |