Metamath Proof Explorer


Theorem gsummptf1o

Description: Re-index a finite group sum using a bijection. (Contributed by Thierry Arnoux, 29-Mar-2018)

Ref Expression
Hypotheses gsummptf1o.x _ x H
gsummptf1o.b B = Base G
gsummptf1o.z 0 ˙ = 0 G
gsummptf1o.i x = E C = H
gsummptf1o.g φ G CMnd
gsummptf1o.a φ A Fin
gsummptf1o.d φ F B
gsummptf1o.f φ x A C F
gsummptf1o.e φ y D E A
gsummptf1o.h φ x A ∃! y D x = E
Assertion gsummptf1o φ G x A C = G y D H

Proof

Step Hyp Ref Expression
1 gsummptf1o.x _ x H
2 gsummptf1o.b B = Base G
3 gsummptf1o.z 0 ˙ = 0 G
4 gsummptf1o.i x = E C = H
5 gsummptf1o.g φ G CMnd
6 gsummptf1o.a φ A Fin
7 gsummptf1o.d φ F B
8 gsummptf1o.f φ x A C F
9 gsummptf1o.e φ y D E A
10 gsummptf1o.h φ x A ∃! y D x = E
11 7 adantr φ x A F B
12 11 8 sseldd φ x A C B
13 12 fmpttd φ x A C : A B
14 eqid x A C = x A C
15 3 fvexi 0 ˙ V
16 15 a1i φ 0 ˙ V
17 14 6 12 16 fsuppmptdm φ finSupp 0 ˙ x A C
18 9 ralrimiva φ y D E A
19 10 ralrimiva φ x A ∃! y D x = E
20 eqid y D E = y D E
21 20 f1ompt y D E : D 1-1 onto A y D E A x A ∃! y D x = E
22 18 19 21 sylanbrc φ y D E : D 1-1 onto A
23 2 3 5 6 13 17 22 gsumf1o φ G x A C = G x A C y D E
24 eqidd φ y D E = y D E
25 eqidd φ x A C = x A C
26 18 24 25 fmptcos φ x A C y D E = y D E / x C
27 nfv x φ y D
28 1 a1i φ y D _ x H
29 4 adantl φ y D x = E C = H
30 27 28 9 29 csbiedf φ y D E / x C = H
31 30 mpteq2dva φ y D E / x C = y D H
32 26 31 eqtrd φ x A C y D E = y D H
33 32 oveq2d φ G x A C y D E = G y D H
34 23 33 eqtrd φ G x A C = G y D H