Metamath Proof Explorer


Theorem gsumval3a

Description: Value of the group sum operation over an index set with finite support. (Contributed by Mario Carneiro, 7-Dec-2014) (Revised by AV, 29-May-2019)

Ref Expression
Hypotheses gsumval3.b B=BaseG
gsumval3.0 0˙=0G
gsumval3.p +˙=+G
gsumval3.z Z=CntzG
gsumval3.g φGMnd
gsumval3.a φAV
gsumval3.f φF:AB
gsumval3.c φranFZranF
gsumval3a.t φWFin
gsumval3a.n φW
gsumval3a.w W=Fsupp0˙
gsumval3a.i φ¬Aran
Assertion gsumval3a φGF=ιx|ff:1W1-1 ontoWx=seq1+˙FfW

Proof

Step Hyp Ref Expression
1 gsumval3.b B=BaseG
2 gsumval3.0 0˙=0G
3 gsumval3.p +˙=+G
4 gsumval3.z Z=CntzG
5 gsumval3.g φGMnd
6 gsumval3.a φAV
7 gsumval3.f φF:AB
8 gsumval3.c φranFZranF
9 gsumval3a.t φWFin
10 gsumval3a.n φW
11 gsumval3a.w W=Fsupp0˙
12 gsumval3a.i φ¬Aran
13 eqid zB|yBz+˙y=yy+˙z=y=zB|yBz+˙y=yy+˙z=y
14 11 a1i φW=Fsupp0˙
15 7 6 fexd φFV
16 2 fvexi 0˙V
17 suppimacnv FV0˙VFsupp0˙=F-1V0˙
18 15 16 17 sylancl φFsupp0˙=F-1V0˙
19 1 2 3 13 gsumvallem2 GMndzB|yBz+˙y=yy+˙z=y=0˙
20 5 19 syl φzB|yBz+˙y=yy+˙z=y=0˙
21 20 eqcomd φ0˙=zB|yBz+˙y=yy+˙z=y
22 21 difeq2d φV0˙=VzB|yBz+˙y=yy+˙z=y
23 22 imaeq2d φF-1V0˙=F-1VzB|yBz+˙y=yy+˙z=y
24 14 18 23 3eqtrd φW=F-1VzB|yBz+˙y=yy+˙z=y
25 1 2 3 13 24 5 6 7 gsumval φGF=ifranFzB|yBz+˙y=yy+˙z=y0˙ifAranιx|mnmA=mnx=seqm+˙Fnιx|ff:1W1-1 ontoWx=seq1+˙FfW
26 20 sseq2d φranFzB|yBz+˙y=yy+˙z=yranF0˙
27 11 a1i φranF0˙W=Fsupp0˙
28 7 6 jca φF:ABAV
29 28 adantr φranF0˙F:ABAV
30 fex F:ABAVFV
31 29 30 syl φranF0˙FV
32 31 16 17 sylancl φranF0˙Fsupp0˙=F-1V0˙
33 7 ffnd φFFnA
34 33 adantr φranF0˙FFnA
35 simpr φranF0˙ranF0˙
36 df-f F:A0˙FFnAranF0˙
37 34 35 36 sylanbrc φranF0˙F:A0˙
38 disjdif 0˙V0˙=
39 fimacnvdisj F:A0˙0˙V0˙=F-1V0˙=
40 37 38 39 sylancl φranF0˙F-1V0˙=
41 27 32 40 3eqtrd φranF0˙W=
42 41 ex φranF0˙W=
43 26 42 sylbid φranFzB|yBz+˙y=yy+˙z=yW=
44 43 necon3ad φW¬ranFzB|yBz+˙y=yy+˙z=y
45 10 44 mpd φ¬ranFzB|yBz+˙y=yy+˙z=y
46 45 iffalsed φifranFzB|yBz+˙y=yy+˙z=y0˙ifAranιx|mnmA=mnx=seqm+˙Fnιx|ff:1W1-1 ontoWx=seq1+˙FfW=ifAranιx|mnmA=mnx=seqm+˙Fnιx|ff:1W1-1 ontoWx=seq1+˙FfW
47 12 iffalsed φifAranιx|mnmA=mnx=seqm+˙Fnιx|ff:1W1-1 ontoWx=seq1+˙FfW=ιx|ff:1W1-1 ontoWx=seq1+˙FfW
48 25 46 47 3eqtrd φGF=ιx|ff:1W1-1 ontoWx=seq1+˙FfW