| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gsumval3.b |
|
| 2 |
|
gsumval3.0 |
|
| 3 |
|
gsumval3.p |
|
| 4 |
|
gsumval3.z |
|
| 5 |
|
gsumval3.g |
|
| 6 |
|
gsumval3.a |
|
| 7 |
|
gsumval3.f |
|
| 8 |
|
gsumval3.c |
|
| 9 |
|
gsumval3a.t |
|
| 10 |
|
gsumval3a.n |
|
| 11 |
|
gsumval3a.w |
|
| 12 |
|
gsumval3a.i |
|
| 13 |
|
eqid |
|
| 14 |
11
|
a1i |
|
| 15 |
7 6
|
fexd |
|
| 16 |
2
|
fvexi |
|
| 17 |
|
suppimacnv |
|
| 18 |
15 16 17
|
sylancl |
|
| 19 |
1 2 3 13
|
gsumvallem2 |
|
| 20 |
5 19
|
syl |
|
| 21 |
20
|
eqcomd |
|
| 22 |
21
|
difeq2d |
|
| 23 |
22
|
imaeq2d |
|
| 24 |
14 18 23
|
3eqtrd |
|
| 25 |
1 2 3 13 24 5 6 7
|
gsumval |
|
| 26 |
20
|
sseq2d |
|
| 27 |
11
|
a1i |
|
| 28 |
7 6
|
jca |
|
| 29 |
28
|
adantr |
|
| 30 |
|
fex |
|
| 31 |
29 30
|
syl |
|
| 32 |
31 16 17
|
sylancl |
|
| 33 |
7
|
ffnd |
|
| 34 |
33
|
adantr |
|
| 35 |
|
simpr |
|
| 36 |
|
df-f |
|
| 37 |
34 35 36
|
sylanbrc |
|
| 38 |
|
disjdif |
|
| 39 |
|
fimacnvdisj |
|
| 40 |
37 38 39
|
sylancl |
|
| 41 |
27 32 40
|
3eqtrd |
|
| 42 |
41
|
ex |
|
| 43 |
26 42
|
sylbid |
|
| 44 |
43
|
necon3ad |
|
| 45 |
10 44
|
mpd |
|
| 46 |
45
|
iffalsed |
|
| 47 |
12
|
iffalsed |
|
| 48 |
25 46 47
|
3eqtrd |
|