Description: Value of the group sum operation over an index set with finite support. (Contributed by Mario Carneiro, 7-Dec-2014) (Revised by AV, 29-May-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | gsumval3.b | |
|
gsumval3.0 | |
||
gsumval3.p | |
||
gsumval3.z | |
||
gsumval3.g | |
||
gsumval3.a | |
||
gsumval3.f | |
||
gsumval3.c | |
||
gsumval3a.t | |
||
gsumval3a.n | |
||
gsumval3a.w | |
||
gsumval3a.i | |
||
Assertion | gsumval3a | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsumval3.b | |
|
2 | gsumval3.0 | |
|
3 | gsumval3.p | |
|
4 | gsumval3.z | |
|
5 | gsumval3.g | |
|
6 | gsumval3.a | |
|
7 | gsumval3.f | |
|
8 | gsumval3.c | |
|
9 | gsumval3a.t | |
|
10 | gsumval3a.n | |
|
11 | gsumval3a.w | |
|
12 | gsumval3a.i | |
|
13 | eqid | |
|
14 | 11 | a1i | |
15 | 7 6 | fexd | |
16 | 2 | fvexi | |
17 | suppimacnv | |
|
18 | 15 16 17 | sylancl | |
19 | 1 2 3 13 | gsumvallem2 | |
20 | 5 19 | syl | |
21 | 20 | eqcomd | |
22 | 21 | difeq2d | |
23 | 22 | imaeq2d | |
24 | 14 18 23 | 3eqtrd | |
25 | 1 2 3 13 24 5 6 7 | gsumval | |
26 | 20 | sseq2d | |
27 | 11 | a1i | |
28 | 7 6 | jca | |
29 | 28 | adantr | |
30 | fex | |
|
31 | 29 30 | syl | |
32 | 31 16 17 | sylancl | |
33 | 7 | ffnd | |
34 | 33 | adantr | |
35 | simpr | |
|
36 | df-f | |
|
37 | 34 35 36 | sylanbrc | |
38 | disjdif | |
|
39 | fimacnvdisj | |
|
40 | 37 38 39 | sylancl | |
41 | 27 32 40 | 3eqtrd | |
42 | 41 | ex | |
43 | 26 42 | sylbid | |
44 | 43 | necon3ad | |
45 | 10 44 | mpd | |
46 | 45 | iffalsed | |
47 | 12 | iffalsed | |
48 | 25 46 47 | 3eqtrd | |