| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gzrng.1 |
|
| 2 |
|
sq1 |
|
| 3 |
|
ax-1ne0 |
|
| 4 |
|
gzsubrg |
|
| 5 |
1
|
subrgring |
|
| 6 |
|
eqid |
|
| 7 |
|
subrgsubg |
|
| 8 |
|
cnfld0 |
|
| 9 |
1 8
|
subg0 |
|
| 10 |
4 7 9
|
mp2b |
|
| 11 |
|
cnfld1 |
|
| 12 |
1 11
|
subrg1 |
|
| 13 |
4 12
|
ax-mp |
|
| 14 |
6 10 13
|
0unit |
|
| 15 |
4 5 14
|
mp2b |
|
| 16 |
3 15
|
nemtbir |
|
| 17 |
1
|
subrgbas |
|
| 18 |
4 17
|
ax-mp |
|
| 19 |
18 6
|
unitcl |
|
| 20 |
|
gzabssqcl |
|
| 21 |
19 20
|
syl |
|
| 22 |
|
elnn0 |
|
| 23 |
21 22
|
sylib |
|
| 24 |
23
|
ord |
|
| 25 |
|
gzcn |
|
| 26 |
19 25
|
syl |
|
| 27 |
26
|
abscld |
|
| 28 |
27
|
recnd |
|
| 29 |
|
sqeq0 |
|
| 30 |
28 29
|
syl |
|
| 31 |
26
|
abs00ad |
|
| 32 |
|
eleq1 |
|
| 33 |
32
|
biimpcd |
|
| 34 |
31 33
|
sylbid |
|
| 35 |
30 34
|
sylbid |
|
| 36 |
24 35
|
syld |
|
| 37 |
16 36
|
mt3i |
|
| 38 |
37
|
nnge1d |
|
| 39 |
2 38
|
eqbrtrid |
|
| 40 |
26
|
absge0d |
|
| 41 |
|
1re |
|
| 42 |
|
0le1 |
|
| 43 |
|
le2sq |
|
| 44 |
41 42 43
|
mpanl12 |
|
| 45 |
27 40 44
|
syl2anc |
|
| 46 |
39 45
|
mpbird |
|