Metamath Proof Explorer


Theorem hashgt12el

Description: In a set with more than one element are two different elements. (Contributed by Alexander van der Vekens, 15-Nov-2017)

Ref Expression
Assertion hashgt12el VW1<VaVbVab

Proof

Step Hyp Ref Expression
1 hash0 =0
2 fveq2 =V=V
3 1 2 eqtr3id =V0=V
4 breq2 V=01<V1<0
5 4 biimpd V=01<V1<0
6 5 eqcoms 0=V1<V1<0
7 0le1 01
8 0re 0
9 1re 1
10 8 9 lenlti 01¬1<0
11 pm2.21 ¬1<01<0aVbVab
12 10 11 sylbi 011<0aVbVab
13 7 12 ax-mp 1<0aVbVab
14 6 13 syl6com 1<V0=VaVbVab
15 14 adantl VW1<V0=VaVbVab
16 15 com12 0=VVW1<VaVbVab
17 3 16 syl =VVW1<VaVbVab
18 df-ne V¬=V
19 necom VV
20 18 19 bitr3i ¬=VV
21 ralnex aV¬bVab¬aVbVab
22 ralnex bV¬ab¬bVab
23 nne ¬aba=b
24 equcom a=bb=a
25 23 24 bitri ¬abb=a
26 25 ralbii bV¬abbVb=a
27 22 26 bitr3i ¬bVabbVb=a
28 27 ralbii aV¬bVabaVbVb=a
29 21 28 bitr3i ¬aVbVabaVbVb=a
30 eqsn VV=abVb=a
31 30 adantl VWVV=abVb=a
32 31 bicomd VWVbVb=aV=a
33 32 ralbidv VWVaVbVb=aaVV=a
34 fveq2 V=aV=a
35 hashsnle1 a1
36 34 35 eqbrtrdi V=aV1
37 36 a1i VWaVV=aV1
38 37 reximdva0 VWVaVV=aV1
39 r19.36v aVV=aV1aVV=aV1
40 38 39 syl VWVaVV=aV1
41 33 40 sylbid VWVaVbVb=aV1
42 hashxrcl VWV*
43 42 adantr VWVV*
44 1xr 1*
45 xrlenlt V*1*V1¬1<V
46 43 44 45 sylancl VWVV1¬1<V
47 41 46 sylibd VWVaVbVb=a¬1<V
48 29 47 biimtrid VWV¬aVbVab¬1<V
49 48 con4d VWV1<VaVbVab
50 49 impancom VW1<VVaVbVab
51 50 com12 VVW1<VaVbVab
52 20 51 sylbi ¬=VVW1<VaVbVab
53 17 52 pm2.61i VW1<VaVbVab