Metamath Proof Explorer


Theorem hashgt23el

Description: A set with more than two elements has at least three different elements. (Contributed by BTernaryTau, 21-Sep-2023)

Ref Expression
Assertion hashgt23el VW2<VaVbVcVabacbc

Proof

Step Hyp Ref Expression
1 2pos 0<2
2 0xr 0*
3 2re 2
4 3 rexri 2*
5 hashxrcl VWV*
6 xrlttr 0*2*V*0<22<V0<V
7 2 4 5 6 mp3an12i VW0<22<V0<V
8 1 7 mpani VW2<V0<V
9 hashgt0elex VW0<VaaV
10 9 ex VW0<VaaV
11 8 10 syld VW2<VaaV
12 11 imp VW2<VaaV
13 difexg VWVaV
14 difsnid aVVaa=V
15 14 fveq2d aVVaa=V
16 15 breq2d aV2<Vaa2<V
17 16 adantr aVVW2<Vaa2<V
18 df-2 2=1+1
19 18 breq1i 2<Vaa1+1<Vaa
20 neldifsn ¬aVa
21 1nn0 10
22 hashunsnggt VaVaV10¬aVa1<Va1+1<Vaa
23 21 22 mp3anl3 VaVaV¬aVa1<Va1+1<Vaa
24 13 23 sylanl1 VWaV¬aVa1<Va1+1<Vaa
25 20 24 mpan2 VWaV1<Va1+1<Vaa
26 25 biimp3ar VWaV1+1<Vaa1<Va
27 19 26 syl3an3b VWaV2<Vaa1<Va
28 27 3expia VWaV2<Vaa1<Va
29 28 ancoms aVVW2<Vaa1<Va
30 17 29 sylbird aVVW2<V1<Va
31 30 3impia aVVW2<V1<Va
32 31 3expib aVVW2<V1<Va
33 1lt2 1<2
34 1xr 1*
35 xrlttr 1*2*V*1<22<V1<V
36 34 4 5 35 mp3an12i VW1<22<V1<V
37 33 36 mpani VW2<V1<V
38 37 imp VW2<V1<V
39 38 3adant1 ¬aVVW2<V1<V
40 difsn ¬aVVa=V
41 40 3ad2ant1 ¬aVVW2<VVa=V
42 41 fveq2d ¬aVVW2<VVa=V
43 39 42 breqtrrd ¬aVVW2<V1<Va
44 43 3expib ¬aVVW2<V1<Va
45 32 44 pm2.61i VW2<V1<Va
46 hashgt12el VaV1<VabVacVabc
47 13 45 46 syl2an2r VW2<VbVacVabc
48 47 alrimiv VW2<VabVacVabc
49 19.29r aaVabVacVabcaaVbVacVabc
50 12 48 49 syl2anc VW2<VaaVbVacVabc
51 df-rex aVbVacVabcaaVbVacVabc
52 eldifsn bVabVba
53 necom baab
54 53 anbi2i bVbabVab
55 52 54 bitri bVabVab
56 ax-5 abcab
57 56 anim2i bVabbVcab
58 55 57 sylbi bVabVcab
59 3anass cVacbccVacbc
60 59 exbii ccVacbcccVacbc
61 df-rex cVabcccVabc
62 eldifsn cVacVca
63 necom caac
64 63 anbi2i cVcacVac
65 62 64 bitri cVacVac
66 65 anbi1i cVabccVacbc
67 df-3an cVacbccVacbc
68 66 67 bitr4i cVabccVacbc
69 68 exbii ccVabcccVacbc
70 61 69 bitri cVabcccVacbc
71 df-rex cVacbcccVacbc
72 60 70 71 3bitr4i cVabccVacbc
73 72 biimpi cVabccVacbc
74 58 73 anim12i bVacVabcbVcabcVacbc
75 alral cabcVab
76 75 anim1i cabcVacbccVabcVacbc
77 r19.29 cVabcVacbccVabacbc
78 3anass abacbcabacbc
79 78 biimpri abacbcabacbc
80 79 reximi cVabacbccVabacbc
81 76 77 80 3syl cabcVacbccVabacbc
82 81 anim2i bVcabcVacbcbVcVabacbc
83 82 anassrs bVcabcVacbcbVcVabacbc
84 74 83 syl bVacVabcbVcVabacbc
85 84 reximi2 bVacVabcbVcVabacbc
86 85 reximi aVbVacVabcaVbVcVabacbc
87 51 86 sylbir aaVbVacVabcaVbVcVabacbc
88 50 87 syl VW2<VaVbVcVabacbc