Description: Part of proof of part 12 in Baer p. 49 line 4, aS=bS iff a=b in their notation (S = sigma). The sigma map is one-to-one. (Contributed by NM, 26-May-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | hdmap12d.h | |
|
hdmap12d.u | |
||
hdmap12d.v | |
||
hdmap12d.s | |
||
hdmap12d.k | |
||
hdmap12d.x | |
||
hdmap12d.y | |
||
Assertion | hdmap11 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hdmap12d.h | |
|
2 | hdmap12d.u | |
|
3 | hdmap12d.v | |
|
4 | hdmap12d.s | |
|
5 | hdmap12d.k | |
|
6 | hdmap12d.x | |
|
7 | hdmap12d.y | |
|
8 | eqid | |
|
9 | eqid | |
|
10 | eqid | |
|
11 | 1 2 3 8 9 10 4 5 6 7 | hdmapsub | |
12 | 11 | eqeq1d | |
13 | eqid | |
|
14 | eqid | |
|
15 | 1 2 5 | dvhlmod | |
16 | 3 8 | lmodvsubcl | |
17 | 15 6 7 16 | syl3anc | |
18 | 1 2 3 13 9 14 4 5 17 | hdmapeq0 | |
19 | 1 9 5 | lcdlmod | |
20 | lmodgrp | |
|
21 | 19 20 | syl | |
22 | eqid | |
|
23 | 1 2 3 9 22 4 5 6 | hdmapcl | |
24 | 1 2 3 9 22 4 5 7 | hdmapcl | |
25 | 22 14 10 | grpsubeq0 | |
26 | 21 23 24 25 | syl3anc | |
27 | 12 18 26 | 3bitr3rd | |
28 | lmodgrp | |
|
29 | 15 28 | syl | |
30 | 3 13 8 | grpsubeq0 | |
31 | 29 6 7 30 | syl3anc | |
32 | 27 31 | bitrd | |