Metamath Proof Explorer


Theorem hdmap11

Description: Part of proof of part 12 in Baer p. 49 line 4, aS=bS iff a=b in their notation (S = sigma). The sigma map is one-to-one. (Contributed by NM, 26-May-2015)

Ref Expression
Hypotheses hdmap12d.h H=LHypK
hdmap12d.u U=DVecHKW
hdmap12d.v V=BaseU
hdmap12d.s S=HDMapKW
hdmap12d.k φKHLWH
hdmap12d.x φXV
hdmap12d.y φYV
Assertion hdmap11 φSX=SYX=Y

Proof

Step Hyp Ref Expression
1 hdmap12d.h H=LHypK
2 hdmap12d.u U=DVecHKW
3 hdmap12d.v V=BaseU
4 hdmap12d.s S=HDMapKW
5 hdmap12d.k φKHLWH
6 hdmap12d.x φXV
7 hdmap12d.y φYV
8 eqid -U=-U
9 eqid LCDualKW=LCDualKW
10 eqid -LCDualKW=-LCDualKW
11 1 2 3 8 9 10 4 5 6 7 hdmapsub φSX-UY=SX-LCDualKWSY
12 11 eqeq1d φSX-UY=0LCDualKWSX-LCDualKWSY=0LCDualKW
13 eqid 0U=0U
14 eqid 0LCDualKW=0LCDualKW
15 1 2 5 dvhlmod φULMod
16 3 8 lmodvsubcl ULModXVYVX-UYV
17 15 6 7 16 syl3anc φX-UYV
18 1 2 3 13 9 14 4 5 17 hdmapeq0 φSX-UY=0LCDualKWX-UY=0U
19 1 9 5 lcdlmod φLCDualKWLMod
20 lmodgrp LCDualKWLModLCDualKWGrp
21 19 20 syl φLCDualKWGrp
22 eqid BaseLCDualKW=BaseLCDualKW
23 1 2 3 9 22 4 5 6 hdmapcl φSXBaseLCDualKW
24 1 2 3 9 22 4 5 7 hdmapcl φSYBaseLCDualKW
25 22 14 10 grpsubeq0 LCDualKWGrpSXBaseLCDualKWSYBaseLCDualKWSX-LCDualKWSY=0LCDualKWSX=SY
26 21 23 24 25 syl3anc φSX-LCDualKWSY=0LCDualKWSX=SY
27 12 18 26 3bitr3rd φSX=SYX-UY=0U
28 lmodgrp ULModUGrp
29 15 28 syl φUGrp
30 3 13 8 grpsubeq0 UGrpXVYVX-UY=0UX=Y
31 29 6 7 30 syl3anc φX-UY=0UX=Y
32 27 31 bitrd φSX=SYX=Y