Metamath Proof Explorer


Theorem hdmap1l6g

Description: Lemmma for hdmap1l6 . Part (6) of Baer p. 47 line 39. (Contributed by NM, 1-May-2015)

Ref Expression
Hypotheses hdmap1l6.h H=LHypK
hdmap1l6.u U=DVecHKW
hdmap1l6.v V=BaseU
hdmap1l6.p +˙=+U
hdmap1l6.s -˙=-U
hdmap1l6c.o 0˙=0U
hdmap1l6.n N=LSpanU
hdmap1l6.c C=LCDualKW
hdmap1l6.d D=BaseC
hdmap1l6.a ˙=+C
hdmap1l6.r R=-C
hdmap1l6.q Q=0C
hdmap1l6.l L=LSpanC
hdmap1l6.m M=mapdKW
hdmap1l6.i I=HDMap1KW
hdmap1l6.k φKHLWH
hdmap1l6.f φFD
hdmap1l6cl.x φXV0˙
hdmap1l6.mn φMNX=LF
hdmap1l6d.xn φ¬XNYZ
hdmap1l6d.yz φNY=NZ
hdmap1l6d.y φYV0˙
hdmap1l6d.z φZV0˙
hdmap1l6d.w φwV0˙
hdmap1l6d.wn φ¬wNXY
Assertion hdmap1l6g φIXFw˙IXFY+˙Z=IXFw˙IXFY˙IXFZ

Proof

Step Hyp Ref Expression
1 hdmap1l6.h H=LHypK
2 hdmap1l6.u U=DVecHKW
3 hdmap1l6.v V=BaseU
4 hdmap1l6.p +˙=+U
5 hdmap1l6.s -˙=-U
6 hdmap1l6c.o 0˙=0U
7 hdmap1l6.n N=LSpanU
8 hdmap1l6.c C=LCDualKW
9 hdmap1l6.d D=BaseC
10 hdmap1l6.a ˙=+C
11 hdmap1l6.r R=-C
12 hdmap1l6.q Q=0C
13 hdmap1l6.l L=LSpanC
14 hdmap1l6.m M=mapdKW
15 hdmap1l6.i I=HDMap1KW
16 hdmap1l6.k φKHLWH
17 hdmap1l6.f φFD
18 hdmap1l6cl.x φXV0˙
19 hdmap1l6.mn φMNX=LF
20 hdmap1l6d.xn φ¬XNYZ
21 hdmap1l6d.yz φNY=NZ
22 hdmap1l6d.y φYV0˙
23 hdmap1l6d.z φZV0˙
24 hdmap1l6d.w φwV0˙
25 hdmap1l6d.wn φ¬wNXY
26 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 hdmap1l6d φIXFw+˙Y+˙Z=IXFw˙IXFY+˙Z
27 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 hdmap1l6e φIXFw+˙Y+˙Z=IXFw+˙Y˙IXFZ
28 1 2 16 dvhlmod φULMod
29 24 eldifad φwV
30 22 eldifad φYV
31 23 eldifad φZV
32 3 4 lmodass ULModwVYVZVw+˙Y+˙Z=w+˙Y+˙Z
33 28 29 30 31 32 syl13anc φw+˙Y+˙Z=w+˙Y+˙Z
34 33 oteq3d φXFw+˙Y+˙Z=XFw+˙Y+˙Z
35 34 fveq2d φIXFw+˙Y+˙Z=IXFw+˙Y+˙Z
36 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 hdmap1l6f φIXFw+˙Y=IXFw˙IXFY
37 36 oveq1d φIXFw+˙Y˙IXFZ=IXFw˙IXFY˙IXFZ
38 27 35 37 3eqtr3d φIXFw+˙Y+˙Z=IXFw˙IXFY˙IXFZ
39 26 38 eqtr3d φIXFw˙IXFY+˙Z=IXFw˙IXFY˙IXFZ