Metamath Proof Explorer


Theorem hdmapf1oN

Description: Part 12 in Baer p. 49. The map from vectors to functionals with closed kernels maps one-to-one onto. Combined with hdmapadd , this shows the map is an automorphism from the additive group of vectors to the additive group of functionals with closed kernels. (Contributed by NM, 30-May-2015) (New usage is discouraged.)

Ref Expression
Hypotheses hdmapf1o.h H=LHypK
hdmapf1o.u U=DVecHKW
hdmapf1o.v V=BaseU
hdmapf1o.c C=LCDualKW
hdmapf1o.d D=BaseC
hdmapf1o.s S=HDMapKW
hdmapf1o.k φKHLWH
Assertion hdmapf1oN φS:V1-1 ontoD

Proof

Step Hyp Ref Expression
1 hdmapf1o.h H=LHypK
2 hdmapf1o.u U=DVecHKW
3 hdmapf1o.v V=BaseU
4 hdmapf1o.c C=LCDualKW
5 hdmapf1o.d D=BaseC
6 hdmapf1o.s S=HDMapKW
7 hdmapf1o.k φKHLWH
8 1 2 3 6 7 hdmapfnN φSFnV
9 1 4 5 6 7 hdmaprnN φranS=D
10 7 adantr φxVyVKHLWH
11 simprl φxVyVxV
12 simprr φxVyVyV
13 1 2 3 6 10 11 12 hdmap11 φxVyVSx=Syx=y
14 13 biimpd φxVyVSx=Syx=y
15 14 ralrimivva φxVyVSx=Syx=y
16 dff1o6 S:V1-1 ontoDSFnVranS=DxVyVSx=Syx=y
17 8 9 15 16 syl3anbrc φS:V1-1 ontoD