Metamath Proof Explorer


Theorem hdmapip1

Description: Construct a proportional vector Y whose inner product with the original X equals one. (Contributed by NM, 13-Jun-2015)

Ref Expression
Hypotheses hdmapip1.h H=LHypK
hdmapip1.u U=DVecHKW
hdmapip1.v V=BaseU
hdmapip1.t ·˙=U
hdmapip1.o 0˙=0U
hdmapip1.r R=ScalarU
hdmapip1.i 1˙=1R
hdmapip1.n N=invrR
hdmapip1.s S=HDMapKW
hdmapip1.k φKHLWH
hdmapip1.x φXV0˙
hdmapip1.y Y=NSXX·˙X
Assertion hdmapip1 φSXY=1˙

Proof

Step Hyp Ref Expression
1 hdmapip1.h H=LHypK
2 hdmapip1.u U=DVecHKW
3 hdmapip1.v V=BaseU
4 hdmapip1.t ·˙=U
5 hdmapip1.o 0˙=0U
6 hdmapip1.r R=ScalarU
7 hdmapip1.i 1˙=1R
8 hdmapip1.n N=invrR
9 hdmapip1.s S=HDMapKW
10 hdmapip1.k φKHLWH
11 hdmapip1.x φXV0˙
12 hdmapip1.y Y=NSXX·˙X
13 12 fveq2i SXY=SXNSXX·˙X
14 eqid BaseR=BaseR
15 eqid R=R
16 11 eldifad φXV
17 1 2 10 dvhlvec φULVec
18 6 lvecdrng ULVecRDivRing
19 17 18 syl φRDivRing
20 1 2 3 6 14 9 10 16 16 hdmapipcl φSXXBaseR
21 eldifsni XV0˙X0˙
22 11 21 syl φX0˙
23 eqid 0R=0R
24 1 2 3 5 6 23 9 10 16 hdmapip0 φSXX=0RX=0˙
25 24 necon3bid φSXX0RX0˙
26 22 25 mpbird φSXX0R
27 14 23 8 drnginvrcl RDivRingSXXBaseRSXX0RNSXXBaseR
28 19 20 26 27 syl3anc φNSXXBaseR
29 1 2 3 4 6 14 15 9 10 16 16 28 hdmaplnm1 φSXNSXX·˙X=NSXXRSXX
30 14 23 15 7 8 drnginvrl RDivRingSXXBaseRSXX0RNSXXRSXX=1˙
31 19 20 26 30 syl3anc φNSXXRSXX=1˙
32 29 31 eqtrd φSXNSXX·˙X=1˙
33 13 32 eqtrid φSXY=1˙