Metamath Proof Explorer


Theorem hdmaprnlem7N

Description: Part of proof of part 12 in Baer p. 49 line 19, s-St e. G(u'+s) = P*. (Contributed by NM, 27-May-2015) (New usage is discouraged.)

Ref Expression
Hypotheses hdmaprnlem1.h H = LHyp K
hdmaprnlem1.u U = DVecH K W
hdmaprnlem1.v V = Base U
hdmaprnlem1.n N = LSpan U
hdmaprnlem1.c C = LCDual K W
hdmaprnlem1.l L = LSpan C
hdmaprnlem1.m M = mapd K W
hdmaprnlem1.s S = HDMap K W
hdmaprnlem1.k φ K HL W H
hdmaprnlem1.se φ s D Q
hdmaprnlem1.ve φ v V
hdmaprnlem1.e φ M N v = L s
hdmaprnlem1.ue φ u V
hdmaprnlem1.un φ ¬ u N v
hdmaprnlem1.d D = Base C
hdmaprnlem1.q Q = 0 C
hdmaprnlem1.o 0 ˙ = 0 U
hdmaprnlem1.a ˙ = + C
hdmaprnlem1.t2 φ t N v 0 ˙
hdmaprnlem1.p + ˙ = + U
hdmaprnlem1.pt φ L S u ˙ s = M N u + ˙ t
Assertion hdmaprnlem7N φ s - C S t L S u ˙ s

Proof

Step Hyp Ref Expression
1 hdmaprnlem1.h H = LHyp K
2 hdmaprnlem1.u U = DVecH K W
3 hdmaprnlem1.v V = Base U
4 hdmaprnlem1.n N = LSpan U
5 hdmaprnlem1.c C = LCDual K W
6 hdmaprnlem1.l L = LSpan C
7 hdmaprnlem1.m M = mapd K W
8 hdmaprnlem1.s S = HDMap K W
9 hdmaprnlem1.k φ K HL W H
10 hdmaprnlem1.se φ s D Q
11 hdmaprnlem1.ve φ v V
12 hdmaprnlem1.e φ M N v = L s
13 hdmaprnlem1.ue φ u V
14 hdmaprnlem1.un φ ¬ u N v
15 hdmaprnlem1.d D = Base C
16 hdmaprnlem1.q Q = 0 C
17 hdmaprnlem1.o 0 ˙ = 0 U
18 hdmaprnlem1.a ˙ = + C
19 hdmaprnlem1.t2 φ t N v 0 ˙
20 hdmaprnlem1.p + ˙ = + U
21 hdmaprnlem1.pt φ L S u ˙ s = M N u + ˙ t
22 eqid - C = - C
23 1 5 9 lcdlmod φ C LMod
24 lmodabl C LMod C Abel
25 23 24 syl φ C Abel
26 1 2 3 5 15 8 9 13 hdmapcl φ S u D
27 10 eldifad φ s D
28 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 hdmaprnlem4tN φ t V
29 1 2 3 5 15 8 9 28 hdmapcl φ S t D
30 15 18 22 25 26 27 29 25 26 27 29 ablpnpcan φ S u ˙ s - C S u ˙ S t = s - C S t
31 15 18 lmodvacl C LMod S u D s D S u ˙ s D
32 23 26 27 31 syl3anc φ S u ˙ s D
33 eqid LSubSp C = LSubSp C
34 15 33 6 lspsncl C LMod S u ˙ s D L S u ˙ s LSubSp C
35 23 32 34 syl2anc φ L S u ˙ s LSubSp C
36 15 6 lspsnid C LMod S u ˙ s D S u ˙ s L S u ˙ s
37 23 32 36 syl2anc φ S u ˙ s L S u ˙ s
38 15 18 lmodvacl C LMod S u D S t D S u ˙ S t D
39 23 26 29 38 syl3anc φ S u ˙ S t D
40 15 6 lspsnid C LMod S u ˙ S t D S u ˙ S t L S u ˙ S t
41 23 39 40 syl2anc φ S u ˙ S t L S u ˙ S t
42 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 hdmaprnlem6N φ L S u ˙ s = L S u ˙ S t
43 41 42 eleqtrrd φ S u ˙ S t L S u ˙ s
44 22 33 lssvsubcl C LMod L S u ˙ s LSubSp C S u ˙ s L S u ˙ s S u ˙ S t L S u ˙ s S u ˙ s - C S u ˙ S t L S u ˙ s
45 23 35 37 43 44 syl22anc φ S u ˙ s - C S u ˙ S t L S u ˙ s
46 30 45 eqeltrrd φ s - C S t L S u ˙ s