Metamath Proof Explorer


Theorem hdmaprnlem7N

Description: Part of proof of part 12 in Baer p. 49 line 19, s-St e. G(u'+s) = P*. (Contributed by NM, 27-May-2015) (New usage is discouraged.)

Ref Expression
Hypotheses hdmaprnlem1.h H=LHypK
hdmaprnlem1.u U=DVecHKW
hdmaprnlem1.v V=BaseU
hdmaprnlem1.n N=LSpanU
hdmaprnlem1.c C=LCDualKW
hdmaprnlem1.l L=LSpanC
hdmaprnlem1.m M=mapdKW
hdmaprnlem1.s S=HDMapKW
hdmaprnlem1.k φKHLWH
hdmaprnlem1.se φsDQ
hdmaprnlem1.ve φvV
hdmaprnlem1.e φMNv=Ls
hdmaprnlem1.ue φuV
hdmaprnlem1.un φ¬uNv
hdmaprnlem1.d D=BaseC
hdmaprnlem1.q Q=0C
hdmaprnlem1.o 0˙=0U
hdmaprnlem1.a ˙=+C
hdmaprnlem1.t2 φtNv0˙
hdmaprnlem1.p +˙=+U
hdmaprnlem1.pt φLSu˙s=MNu+˙t
Assertion hdmaprnlem7N φs-CStLSu˙s

Proof

Step Hyp Ref Expression
1 hdmaprnlem1.h H=LHypK
2 hdmaprnlem1.u U=DVecHKW
3 hdmaprnlem1.v V=BaseU
4 hdmaprnlem1.n N=LSpanU
5 hdmaprnlem1.c C=LCDualKW
6 hdmaprnlem1.l L=LSpanC
7 hdmaprnlem1.m M=mapdKW
8 hdmaprnlem1.s S=HDMapKW
9 hdmaprnlem1.k φKHLWH
10 hdmaprnlem1.se φsDQ
11 hdmaprnlem1.ve φvV
12 hdmaprnlem1.e φMNv=Ls
13 hdmaprnlem1.ue φuV
14 hdmaprnlem1.un φ¬uNv
15 hdmaprnlem1.d D=BaseC
16 hdmaprnlem1.q Q=0C
17 hdmaprnlem1.o 0˙=0U
18 hdmaprnlem1.a ˙=+C
19 hdmaprnlem1.t2 φtNv0˙
20 hdmaprnlem1.p +˙=+U
21 hdmaprnlem1.pt φLSu˙s=MNu+˙t
22 eqid -C=-C
23 1 5 9 lcdlmod φCLMod
24 lmodabl CLModCAbel
25 23 24 syl φCAbel
26 1 2 3 5 15 8 9 13 hdmapcl φSuD
27 10 eldifad φsD
28 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 hdmaprnlem4tN φtV
29 1 2 3 5 15 8 9 28 hdmapcl φStD
30 15 18 22 25 26 27 29 25 26 27 29 ablpnpcan φSu˙s-CSu˙St=s-CSt
31 15 18 lmodvacl CLModSuDsDSu˙sD
32 23 26 27 31 syl3anc φSu˙sD
33 eqid LSubSpC=LSubSpC
34 15 33 6 lspsncl CLModSu˙sDLSu˙sLSubSpC
35 23 32 34 syl2anc φLSu˙sLSubSpC
36 15 6 lspsnid CLModSu˙sDSu˙sLSu˙s
37 23 32 36 syl2anc φSu˙sLSu˙s
38 15 18 lmodvacl CLModSuDStDSu˙StD
39 23 26 29 38 syl3anc φSu˙StD
40 15 6 lspsnid CLModSu˙StDSu˙StLSu˙St
41 23 39 40 syl2anc φSu˙StLSu˙St
42 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 hdmaprnlem6N φLSu˙s=LSu˙St
43 41 42 eleqtrrd φSu˙StLSu˙s
44 22 33 lssvsubcl CLModLSu˙sLSubSpCSu˙sLSu˙sSu˙StLSu˙sSu˙s-CSu˙StLSu˙s
45 23 35 37 43 44 syl22anc φSu˙s-CSu˙StLSu˙s
46 30 45 eqeltrrd φs-CStLSu˙s