Metamath Proof Explorer


Theorem hdmapval2

Description: Value of map from vectors to functionals with a specific auxiliary vector. TODO: Would shorter proofs result if the .ne hypothesis were changed to two =/= hypothesis? Consider hdmaplem1 through hdmaplem4 , which would become obsolete. (Contributed by NM, 15-May-2015)

Ref Expression
Hypotheses hdmapval2.h H=LHypK
hdmapval2.e E=IBaseKILTrnKW
hdmapval2.u U=DVecHKW
hdmapval2.v V=BaseU
hdmapval2.n N=LSpanU
hdmapval2.c C=LCDualKW
hdmapval2.d D=BaseC
hdmapval2.j J=HVMapKW
hdmapval2.i I=HDMap1KW
hdmapval2.s S=HDMapKW
hdmapval2.k φKHLWH
hdmapval2.t φTV
hdmapval2.x φXV
hdmapval2.ne φ¬XNENT
Assertion hdmapval2 φST=IXIEJEXT

Proof

Step Hyp Ref Expression
1 hdmapval2.h H=LHypK
2 hdmapval2.e E=IBaseKILTrnKW
3 hdmapval2.u U=DVecHKW
4 hdmapval2.v V=BaseU
5 hdmapval2.n N=LSpanU
6 hdmapval2.c C=LCDualKW
7 hdmapval2.d D=BaseC
8 hdmapval2.j J=HVMapKW
9 hdmapval2.i I=HDMap1KW
10 hdmapval2.s S=HDMapKW
11 hdmapval2.k φKHLWH
12 hdmapval2.t φTV
13 hdmapval2.x φXV
14 hdmapval2.ne φ¬XNENT
15 eqidd φST=ST
16 1 3 4 6 7 10 11 12 hdmapcl φSTD
17 1 2 3 4 5 6 7 8 9 10 11 12 16 hdmapval2lem φST=STzV¬zNENTST=IzIEJEzT
18 15 17 mpbid φzV¬zNENTST=IzIEJEzT
19 eleq1 z=XzNENTXNENT
20 19 notbid z=X¬zNENT¬XNENT
21 oteq1 z=XzIEJEzT=XIEJEzT
22 oteq3 z=XEJEz=EJEX
23 22 fveq2d z=XIEJEz=IEJEX
24 23 oteq2d z=XXIEJEzT=XIEJEXT
25 21 24 eqtrd z=XzIEJEzT=XIEJEXT
26 25 fveq2d z=XIzIEJEzT=IXIEJEXT
27 26 eqeq2d z=XST=IzIEJEzTST=IXIEJEXT
28 20 27 imbi12d z=X¬zNENTST=IzIEJEzT¬XNENTST=IXIEJEXT
29 28 rspccv zV¬zNENTST=IzIEJEzTXV¬XNENTST=IXIEJEXT
30 18 13 14 29 syl3c φST=IXIEJEXT