Metamath Proof Explorer


Theorem hgmap11

Description: The scalar sigma map is one-to-one. (Contributed by NM, 7-Jun-2015)

Ref Expression
Hypotheses hgmap11.h H = LHyp K
hgmap11.u U = DVecH K W
hgmap11.r R = Scalar U
hgmap11.b B = Base R
hgmap11.g G = HGMap K W
hgmap11.k φ K HL W H
hgmap11.x φ X B
hgmap11.y φ Y B
Assertion hgmap11 φ G X = G Y X = Y

Proof

Step Hyp Ref Expression
1 hgmap11.h H = LHyp K
2 hgmap11.u U = DVecH K W
3 hgmap11.r R = Scalar U
4 hgmap11.b B = Base R
5 hgmap11.g G = HGMap K W
6 hgmap11.k φ K HL W H
7 hgmap11.x φ X B
8 hgmap11.y φ Y B
9 eqid Base U = Base U
10 eqid 0 U = 0 U
11 1 2 9 10 6 dvh1dim φ t Base U t 0 U
12 11 adantr φ G X = G Y t Base U t 0 U
13 simp1r φ G X = G Y t Base U t 0 U G X = G Y
14 13 oveq1d φ G X = G Y t Base U t 0 U G X LCDual K W HDMap K W t = G Y LCDual K W HDMap K W t
15 eqid U = U
16 eqid LCDual K W = LCDual K W
17 eqid LCDual K W = LCDual K W
18 eqid HDMap K W = HDMap K W
19 simp1l φ G X = G Y t Base U t 0 U φ
20 19 6 syl φ G X = G Y t Base U t 0 U K HL W H
21 simp2 φ G X = G Y t Base U t 0 U t Base U
22 19 7 syl φ G X = G Y t Base U t 0 U X B
23 1 2 9 15 3 4 16 17 18 5 20 21 22 hgmapvs φ G X = G Y t Base U t 0 U HDMap K W X U t = G X LCDual K W HDMap K W t
24 19 8 syl φ G X = G Y t Base U t 0 U Y B
25 1 2 9 15 3 4 16 17 18 5 20 21 24 hgmapvs φ G X = G Y t Base U t 0 U HDMap K W Y U t = G Y LCDual K W HDMap K W t
26 14 23 25 3eqtr4d φ G X = G Y t Base U t 0 U HDMap K W X U t = HDMap K W Y U t
27 1 2 6 dvhlmod φ U LMod
28 19 27 syl φ G X = G Y t Base U t 0 U U LMod
29 9 3 15 4 lmodvscl U LMod X B t Base U X U t Base U
30 28 22 21 29 syl3anc φ G X = G Y t Base U t 0 U X U t Base U
31 9 3 15 4 lmodvscl U LMod Y B t Base U Y U t Base U
32 28 24 21 31 syl3anc φ G X = G Y t Base U t 0 U Y U t Base U
33 1 2 9 18 20 30 32 hdmap11 φ G X = G Y t Base U t 0 U HDMap K W X U t = HDMap K W Y U t X U t = Y U t
34 26 33 mpbid φ G X = G Y t Base U t 0 U X U t = Y U t
35 1 2 6 dvhlvec φ U LVec
36 19 35 syl φ G X = G Y t Base U t 0 U U LVec
37 simp3 φ G X = G Y t Base U t 0 U t 0 U
38 9 15 3 4 10 36 22 24 21 37 lvecvscan2 φ G X = G Y t Base U t 0 U X U t = Y U t X = Y
39 34 38 mpbid φ G X = G Y t Base U t 0 U X = Y
40 39 rexlimdv3a φ G X = G Y t Base U t 0 U X = Y
41 12 40 mpd φ G X = G Y X = Y
42 41 ex φ G X = G Y X = Y
43 fveq2 X = Y G X = G Y
44 42 43 impbid1 φ G X = G Y X = Y