Step |
Hyp |
Ref |
Expression |
1 |
|
hhsst.1 |
|
2 |
|
hhsst.2 |
|
3 |
1 2
|
hhsst |
|
4 |
|
shss |
|
5 |
3 4
|
jca |
|
6 |
|
eleq1 |
|
7 |
|
eqid |
|
8 |
|
xpeq1 |
|
9 |
|
xpeq2 |
|
10 |
8 9
|
eqtrd |
|
11 |
10
|
reseq2d |
|
12 |
|
xpeq2 |
|
13 |
12
|
reseq2d |
|
14 |
11 13
|
opeq12d |
|
15 |
|
reseq2 |
|
16 |
14 15
|
opeq12d |
|
17 |
2 16
|
eqtrid |
|
18 |
17
|
eleq1d |
|
19 |
|
sseq1 |
|
20 |
18 19
|
anbi12d |
|
21 |
|
xpeq1 |
|
22 |
|
xpeq2 |
|
23 |
21 22
|
eqtrd |
|
24 |
23
|
reseq2d |
|
25 |
|
xpeq2 |
|
26 |
25
|
reseq2d |
|
27 |
24 26
|
opeq12d |
|
28 |
|
reseq2 |
|
29 |
27 28
|
opeq12d |
|
30 |
29
|
eleq1d |
|
31 |
|
sseq1 |
|
32 |
30 31
|
anbi12d |
|
33 |
|
ax-hfvadd |
|
34 |
|
ffn |
|
35 |
|
fnresdm |
|
36 |
33 34 35
|
mp2b |
|
37 |
|
ax-hfvmul |
|
38 |
|
ffn |
|
39 |
|
fnresdm |
|
40 |
37 38 39
|
mp2b |
|
41 |
36 40
|
opeq12i |
|
42 |
|
normf |
|
43 |
|
ffn |
|
44 |
|
fnresdm |
|
45 |
42 43 44
|
mp2b |
|
46 |
41 45
|
opeq12i |
|
47 |
46 1
|
eqtr4i |
|
48 |
1
|
hhnv |
|
49 |
|
eqid |
|
50 |
49
|
sspid |
|
51 |
48 50
|
ax-mp |
|
52 |
47 51
|
eqeltri |
|
53 |
|
ssid |
|
54 |
52 53
|
pm3.2i |
|
55 |
20 32 54
|
elimhyp |
|
56 |
55
|
simpli |
|
57 |
55
|
simpri |
|
58 |
1 7 56 57
|
hhshsslem2 |
|
59 |
6 58
|
dedth |
|
60 |
5 59
|
impbii |
|