Metamath Proof Explorer


Theorem hoidmvcl

Description: The dimensional volume of a multidimensional half-open interval is a nonnegative real. (Contributed by Glauco Siliprandi, 21-Nov-2020)

Ref Expression
Hypotheses hoidmvcl.l L = x Fin a x , b x if x = 0 k x vol a k b k
hoidmvcl.x φ X Fin
hoidmvcl.a φ A : X
hoidmvcl.b φ B : X
Assertion hoidmvcl φ A L X B 0 +∞

Proof

Step Hyp Ref Expression
1 hoidmvcl.l L = x Fin a x , b x if x = 0 k x vol a k b k
2 hoidmvcl.x φ X Fin
3 hoidmvcl.a φ A : X
4 hoidmvcl.b φ B : X
5 1 3 4 2 hoidmvval φ A L X B = if X = 0 k X vol A k B k
6 0e0icopnf 0 0 +∞
7 6 a1i φ 0 0 +∞
8 0xr 0 *
9 8 a1i φ 0 *
10 pnfxr +∞ *
11 10 a1i φ +∞ *
12 3 ffvelrnda φ k X A k
13 4 ffvelrnda φ k X B k
14 volico A k B k vol A k B k = if A k < B k B k A k 0
15 12 13 14 syl2anc φ k X vol A k B k = if A k < B k B k A k 0
16 13 12 resubcld φ k X B k A k
17 0red φ k X 0
18 16 17 ifcld φ k X if A k < B k B k A k 0
19 15 18 eqeltrd φ k X vol A k B k
20 2 19 fprodrecl φ k X vol A k B k
21 20 rexrd φ k X vol A k B k *
22 nfv k φ
23 13 rexrd φ k X B k *
24 icombl A k B k * A k B k dom vol
25 12 23 24 syl2anc φ k X A k B k dom vol
26 volge0 A k B k dom vol 0 vol A k B k
27 25 26 syl φ k X 0 vol A k B k
28 22 2 19 27 fprodge0 φ 0 k X vol A k B k
29 20 ltpnfd φ k X vol A k B k < +∞
30 9 11 21 28 29 elicod φ k X vol A k B k 0 +∞
31 7 30 ifcld φ if X = 0 k X vol A k B k 0 +∞
32 5 31 eqeltrd φ A L X B 0 +∞