Step |
Hyp |
Ref |
Expression |
1 |
|
hspmbllem3.h |
|
2 |
|
hspmbllem3.x |
|
3 |
|
hspmbllem3.i |
|
4 |
|
hspmbllem3.y |
|
5 |
|
hspmbllem3.a |
|
6 |
|
hspmbllem3.s |
|
7 |
|
hspmbllem3.c |
|
8 |
|
hspmbllem3.l |
|
9 |
|
hspmbllem3.d |
|
10 |
|
hspmbllem3.10 |
|
11 |
|
hspmbllem3.11 |
|
12 |
|
inss1 |
|
13 |
12 6
|
sstrid |
|
14 |
2 13
|
ovncl |
|
15 |
12
|
a1i |
|
16 |
2 15 6
|
ovnssle |
|
17 |
5 14 16
|
ge0lere |
|
18 |
6
|
ssdifssd |
|
19 |
2 18
|
ovncl |
|
20 |
|
difssd |
|
21 |
2 20 6
|
ovnssle |
|
22 |
5 19 21
|
ge0lere |
|
23 |
|
rexadd |
|
24 |
17 22 23
|
syl2anc |
|
25 |
2
|
adantr |
|
26 |
3
|
ne0d |
|
27 |
26
|
adantr |
|
28 |
6
|
adantr |
|
29 |
|
simpr |
|
30 |
25 27 28 29 7 8 9
|
ovncvrrp |
|
31 |
25
|
adantr |
|
32 |
3
|
ad2antrr |
|
33 |
4
|
ad2antrr |
|
34 |
29
|
adantr |
|
35 |
28
|
adantr |
|
36 |
|
fveq1 |
|
37 |
36
|
fveq2d |
|
38 |
37
|
mpteq2dv |
|
39 |
38
|
fveq2d |
|
40 |
39
|
breq1d |
|
41 |
40
|
cbvrabv |
|
42 |
41
|
mpteq2i |
|
43 |
42
|
mpteq2i |
|
44 |
9 43
|
eqtri |
|
45 |
|
simpr |
|
46 |
31 35 34 7 8 44 45 10 11
|
ovncvr2 |
|
47 |
46
|
simplld |
|
48 |
47
|
simpld |
|
49 |
47
|
simprd |
|
50 |
46
|
simplrd |
|
51 |
46
|
simprd |
|
52 |
5
|
adantr |
|
53 |
29
|
rpred |
|
54 |
52 53
|
rexaddd |
|
55 |
54
|
adantr |
|
56 |
51 55
|
breqtrd |
|
57 |
5
|
ad2antrr |
|
58 |
17
|
ad2antrr |
|
59 |
22
|
ad2antrr |
|
60 |
|
eqid |
|
61 |
|
eqid |
|
62 |
|
eqid |
|
63 |
1 31 32 33 34 48 49 50 56 57 58 59 60 61 62
|
hspmbllem2 |
|
64 |
63
|
ex |
|
65 |
64
|
exlimdv |
|
66 |
30 65
|
mpd |
|
67 |
66
|
ralrimiva |
|
68 |
17 22
|
readdcld |
|
69 |
|
alrple |
|
70 |
68 5 69
|
syl2anc |
|
71 |
67 70
|
mpbird |
|
72 |
24 71
|
eqbrtrd |
|